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A Generalization of the Classical Haar Theory
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We generalize the concept of strong uniqueness of the metric projection PGunder
Hausdorff metric. We show that, under this metric, the following statements are
equivalent:

(i) PG is continuous;

(ii) PG is pointwise Lipschitz continuous;

(iii) PG is pointwise strongly unique.

I£; 1989 Academic Press, Inc.

1. INTRODUCTION

Let T be a locally compact Hausdorff space and let Co( T) be the Banach
space of real-valued continuous functions I on T which vanish at infinity,
i.e., the set {t E T: 1/(t)1 ~ s} is compact for every s > o. Co( T) is endowed
with the supremum norm:

II/II = sup{ 1/(t)I: t E T}.

For two subsets A, B in Co( T), define

d(A, B) = sup inf II/-gil,
fEA gEB

D(A, B)=max{d(A, B), d(B, A)}.

Here D(A, B) is called the Hausdorff metric of A and B. For a finite-dimen-
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sional subspace G of Co( T), the metric projection PG from Co{ T) to G is
defined as

PG(f= {gEG: Ilf-gil =d(f, G)},

There are very nice characterizations which ensure the uniqueness of PG'

THEOREM A. Suppose that G is a finite-dimensional subspace of Coi ri.
Then the following are equivalent:

(i) G satisfies the Haar condition; i.e., every l1on::ero g E G has at
most dim G - 1 ::eros;

(iii PG(f) is unique (i.e., is a sing/eton) for allfECo(T):

(iii) for every f E Co( T), PG(f) is strongly unique; i.e., there exists
r(f) > 0 such that

Ilf- gil ~ d(f, G) + r(f) ·llg- PG(flli, gEG;

(iv) for every fECo(T), PG is Lipschitz continuous at f; i.e., there
exists 5(/) > 0 such that

IIPG(f)-PG(h)11 ~s(f) '1If-hll,

Furthermore, if T = [a, b], then all the above are equimlenr to

(v) UG=SUG,

where UG={fECo(T):Pdf) is unique} and SUG={fECo(T):Pdf) is
strong unique}.

The equivalence of (i) and (ii) is proved by Young [16], Haar [9], and
Phelps [15]. Freud shows that (i) implies (iv) [7]. That (i) implies (iii) is
a result of Newman and Shapiro [12]. The equivalence of (i) and (v) is
established by MacLaughlin and Somers [11]. And Cheney proves that
(iii) implies (iv) [6]. Now the Lipschitz continuity and strong uniqueness
of PG become an interesting topic in approximation theory (see [1, 2, l 13,
14] and references therein).

The main purpose of this paper is to develop an analogous theorem for
the multi-valued metric projection PG' A natural generalization of strong
uniqueness for the multi-valued metric projection PG seems to be the
following:

DEFINITION. PG(f) is called Hausdorff strongly unique if there exists
r(f) > 0 such that

Ilf-gil ~d(f, G)+r(f)·d(g, PG(f)), gEG.
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Recall that P G is Hausdorff continuous at f if

lim sup D(Pdf), PG(l1)) = 0;
e~O+ Ilh-fll,;;e

and P G is Hausdorff-Lipschitz continuous at f if there exists s(f) > 0 such
that

D(PG(f), PG(h)):::;; s(f) ·Ilf- hll,

Then the main results of this paper can be summarized as follows:

THEOREM 1. Suppose that G is a finite-dimensional subspace of Co(T).
Then the following statements are mutually equivalent:

(i) for every nonzero g E G,

card(bdZ(g)):::;; dim{p E G: int Z(g) c Z(p)} - 1; (1)

(ii) PG is Hausdorff continuous at every fE Co(T);

(iii) PG(f) is Hausdorff strongly unique for all f E Co(T);

(iv) PG is Hausdorff-Lipschitz continuous at every fE Co(T).

If T contains no isolated points, then all above are equivalent to

(v) UG=SUG.

Furthermore, if T is connected, then all above are equivalent to the fact that
G satisfies the Haar condition.

Here Z(g) is the set of all zeros of g and card(bdZ(g)) denotes the
cardinal number of the boundary set of Z(g).

By Theorem 1 we know that condition (1) is a natural generalization of
the Haar condition and generally SUG = UG is not a characteristic descrip­
tion of the Haar condition.

Remark. A nonintrinsic characterization of Hausdorff continuous
metric projections was given in [4]. A consequence of this result is that PG

is Hausdorff continuous if and only if G satisfies the Haar condition,
provided that Tis connected [4]. Moreover, for T=N (i.e., Co(T)=co) it
was proved in [4] that P G is Hausdorff continuous and in [14] that
UG = SUG for an arbitrary finite-dimensional space G of Co.

2. THE EQUIVALENCE OF HAUSDORFF STRONG UNIQUENESS

AND HAUSDORFF-LIPSCIDTZ CONTINUITY

From now on, we always assume that G is a finite-dimensional subspace
of Co( T). Since PG is upper semicontinuous (i.e., for any f E Co( T),
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d( P G(h), Pdf)) ~ 0 as h ~f), P G is Hausdorff continuous at f if and only
if P G is lower semicontinuous at f (i.e., d(PG(f), P G(h)) ~ 0 as h -+ f). Our
proofs are based on the following theorem:

THEOREM B. P G is HausdOlff continuous at f if and only ~l

E(f-PG(f))cint{tET:p(t)-g(t)=O fOl" all p, gEPG(f)}, where
E(f- PG(f)) = {t E T: If(t) - g(t)1 = d(f, G) fOl" all g E PG(f)}·

Theorem B is announced in [5J and can be deduced from the proof of
Theorem 2 in [4].

First we show that Hausdorff strong uniqueness is closely related to
Hausdorff-Lipschitz continuity.

LEMMA 1. Suppose that P G is Hausdorff continuous at fEe o( T) \, G.
Then the following statements are mutually equivalent:

(i) there exists I" > 0 such that

sup{ (f(t) - Pdf)) p(t): t E E(f- PG(f))} ~ 1"' Ilpll v. pEG,

where V=int{tET:p(t)-g(t)=O for all p,gEPG(f)} and Ilpllv=
sup{lp(t)l: tE V};

(ii) PG(f) is Hausdo~ff strongly unique;

(iii) PG is upper Hausdorff-Lipschitz continuous at!; i.e., there exists
s > 0 such that

d(PG(h), PG(f)) ~ s· Ilh - fll,

(iv) PG is Hausdorff-Lipschitz continuous at f

Proof We first show some simple facts. From Theorem B, we have

E(f- PG(f)) c v.

Set g* E PG(f) such that

E(f- g*) = E(f- PG(f)) c v.

Let b = d(f, G) - max{ If(t) - g*(t)l: t E T\ V}. Then

(2)

(3)

g* +pE Pdf), for pEG with VcZ(p) and Ilpll ~b. (4)

Set G(f) = span {p - g: p, g E PG(f)}. Then for some c> 0,

640,56,'1-4

d(p, G(f)) ~ c IIp!1 v, pEG. (5 )
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In fact, if (5) fails to be true, then for some pEG \ G(f),

v c Z(p).

From (4) we obtain that for some A> 0, g* + AP E Pdf), i.e.,

P E G(f)/A = G(f).

This is impossible.
Now we begin to investigate the relations among the statements in

Lemma 1.
(i) = (ii). By (i) and the strong Kolmogorov criterion [13], we deduce

that there exists r(f) > 0 such that

II!- pil ~ d(f, G) + r(f) . II p - PG(f) II v, pEG. (6)

Assume that statement (ii) is not true; i.e., there exist pnEG \ PG(f) such
that

n ~ 1. (7)

LetgnEPdf) such that d(p,,, PG(f)) = IIPn-g"ll. From (6) and (7) we get

as n --t 00. (8)

By selecting a subsequence, we may assume

as n --t 00.

Equation (8) implies V c Z(p). By (5), P E G(f). Set

qn=g,,+ IIPn-gnll·P·

Since IIPn - q"ll/d(Pn, PG(f)) = IIPn - qnll/llp" - g,,11 --t 0 as n --t 00, we
obtain that

Thus we derive from (7) that

as n --t 00.

(II!- q,,11 - d(f, G))/d(qn, PG(J)) --t 0 as n --t 00. (9)

But VC Z(p) n Z(g,,- g*) C Z(qn- g*) and qn E PG(f). By (4), there
exists 1 > An > 0 such that

(10)
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g* + A(qll - g*) E PG(f), for J > A". (11 )

Set un=g*+)-n(qn-g*). From (10) and (11) we obtain

max{(f(t)-Un(t))(q,,(t)-g*(t)): tEE(f-u"r, V} ;?<O. (12)

Let til E E(f- un)\' V such that

Then

[qn(tn) - g*(tn)1 ;?< If(tn)- un(tnll-If(tnl - g*(tnli

= d(f, G) -If(tn) - g*(tn)1 ;?<!S,

And

Ilf- qn!1 ;?< If(tn) - qll(tn)!

= If(tn) - un(tn) + (1- )·,,)(qnU,,) - g*(tn))1

= If(tn)-un(t,,)! + (1-/ n) !qn(tnl-g*Un)1

;?< dU; G) + (1- An)!S. (13)

But for some K> 0, Ilqn- g*11 ::::; K. So

Equations (13) and (14) contradict (9). This proves that (i) implies (ii).
(iil=(i). Suppose

lip -!II ;?< d(f, G) + s(f)· d(p, Pdfl),

If (i) is false, then there exists pEG such that

pEG. (15 )

Ilpll v> 0, (16)

sup{ (f(tl - Pdf)) p(t): t E EU- PG(f))} ::::; O. (17)

From (17) we obtain that there exists an open set W => E(j- PGU)) such
that

p(t)· sign(f(t) - g*(t))::::; -s(f)d(p, G(f))j2,

Let e = d(f, G) - max{ If(t) - g*(t)I: t E T\ W} > O. Then

tE W. (18)

If(t) - g*(t) - r· p(tll < d(f, G), O<r<e/llpll and tET\W. (19 )
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Choose t r E T such that
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111- g* - r ·pll = I/(tr) - g*(tr) - r· p(tr)1

= 11/(tr) - g*(tr)l- r ·p(tr)· sign(f(tr) - g*(tr) - g*(tr))I.

(20)

IfO<r<e/llpll, then (19) implies trE W. It follows from (18) and (20) that

III- g* - r .pll :::.;; d(f, G) + r . s(f) . d(p, G(f) )/2. (21)

But d(g* + r·p, Pdf)) = d(r·p, PG(f) - g*) ~ d(r·p, G(f)) =
r ·d(p, G(f)). This means that (21) contradicts (15).

(ii) = (iii). Suppose

III- pll ~ d(f, G) + r(f) . d(p, PGU)), pEG.

For any pEPG(h), we have

r(f)· d(p, PG(f)):::';; III- pll - d(f, G)

:::.;; II/-hil + Ilh-pll-d(f, G)

= II/-hil +d(h, G)-d(f, G):::';;211/-hll·

Hence

d(PG(h), PG(f)):::.;; 2 ·111- hll/r(f), hE Co(T).

(iii) = (i). Assume that statement (i) fails to be true; i.e., there exists
pEG such that

Define

sup{(f(t) - Pdf, t)) p(t): tE E(f- PG(f))}:::';; 0, Ilpllv#O.

where

lrAt) = [f(t) - g*(t) - (X. p(t)]d(~(~)G)+g*(t) + (Xp(t),

I
b, x~b,

[x]~= x, a<x<b,

a, x:::';;a.

It is easy to check that

g* + (Xp E PG(!xl,

III- fc"'/(X --+ 0 as (X --+ 0 +.
(22)
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d(Pdf~), Pdf)) ~ d(g* + rxp, PGU))

~ d(rxp, G(f)) ~ tl. ·llpll v, for rx > O. (23 j

Equations (22) and (23) contradict the fact that PG IS upper
Hausdorff-Lipschitz continuous at!

(iii) => (iv j. Since PG is upper Hausdorff-Lipschitz continuous at f, for
any pEPcCh) and gEPG(f),

lip - gil v~ d(p, Pdf)) ~s(f)· !If- hll· (241

By (5) and (24), we obtain

d(p - g, G(f)) ~ c ·llp - gil v~ c ·s(/) ·llf- hi!. (25)

For g E Pdf), define

iJ(g)=d(f, G)-max{lf(t)-g(f)I: tE T\ V}.

Suppose g E PG(f) such that

iJ(g) ~ (c. s(f) + 2) '1If- hll·

From (25) we obtain that for some pEPG(h) and q E G(I).

Ilg- p - qll ~ c ·s(f)· !if- hil·

For IE T\ V,

ih(t) - p(t) - q(t)1

~ Ih(t)-f(/)1 + If(t)-g(t)1 + Ig(t)-p(t)+q(t)1

~ Ilf-hil +d(f, G)-(c·s(f)+2) Ilf-hil +c·s(f) Ilf-hil

~ d(f, G) -Ilf- hll ~ d(h, Gj.

For IE V,

Ih(t)-p(t)-q(t)1 = Ih(t)-p(t)1 ~d(h, G).

Thus p+qEPG(h) and

d(g, Pdh)) ~ Ilg - p- qll ~ c ·s(f) ·llf-hll. (26)

Set
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Suppose
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II/-hil <S.

For gE Pdf) with b(g) ~ (c· s(f) + 2) III- hll, define

W = {tE T\ V: I/(t) - g(t)1 ~ d(f, G) -~}.

Since I/(t)-g*(t)1 ~d(f, G)-b, we obtain

(f(t)-g(t))(g(t)-g*(t))~O, tE W, (27)

b
Ig(t)-g*(t)1 ~"2' tE w. (28)

Let

A= (c· s(f) + 2) III- hll/lig - g*ll·

Then from (27) and (28) we deduce

I/(t) - g(t) - A(g(t) - g*(t))1

= I/(t)-g(t)I-A Ig(t)-g*(t)1

~ d(f, G) - A' bl2

~ d(f, G) - (c ·s(f) + 2) '11/- hll, tE w.

But for tE T\(Vu W), we have

11(t) - g(t) - A(g(t) - g*(t))1

b
~d(f, G) -"2+ (c ·s(f) +2) III-hll

~ d(f, G) - (c· s(f) + 2). III- hll·

Thus

b(g+ A(g- g*)) ~ (c ·s(f) + 2 '111- hll·

By (26) we get

d((g + A(g- g*)), PG(h)) ~ c ·s(f) '111- hll.

And

d(g, PG(h)) ~ c ·s(f)· III- hll + IIA(g- g*)1/

~2(c ·s(f)+ 1) II/-hil.
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Hence

d(PG(f), PG(h))~2(c·s(f)+llif-hl!,

hE Cot T) with Ilf- hll < e.

But (29) implies that for some K> 0 [2],

17~
" ,j

(29)

d(Pdf), PG(h))~K'lif-h\l,

Let M = K + s(f). Then

(iv) ==> (iii). It is trivial.
The proof of Lemma 1 is completed now.

COROLLARY 1 [2]. If PG(f) is unique, then the following are equivalent:

(i) PG(f) if strongly unique;

(ii) P G is Hausdorff-Lipschitz continuous at f

Proof Since P G(f) is unique, Pdf) is Hausdorff strongly unique if and
only if PG(f) is trongly unique. Thus the corollary follows immediately
from Lemma 1.

Lemma 1 can be considered as a generalization of Corollary 1 for multi~

valued PG(f).

3. HAUSDORFF STRONG UNIQUENESS

In this section, we will show that if G satisfies condition (1), then PGU )
is Hausdorff strongly unique for every f E Co( T).

From now on, we make use of the following notation:

GB={gEG:BeZ(g)}, BeT;

Z(GB) = {t E T: g( t) = 0 for all g E GB}.

LEMMA 2 [10]. G satisfies condition (l) ~r and only (f P G is Hausdorff
continuous at el'ery f E Co( T).

LEMMA 3. G satisfies condition (1) if and only if for any {t i} ~ e T with

dim G I" " = dim G Ir t I' ; t 1 = r,
\ I Jo ,1)0 l jJ

(30)
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(31 )

Proof Necessity. It is an immediate corollary of Lemma 4 in [10] and
Lemma 2.

Sufficiency. Assume that G does not satisfy (1), i.e., there exists nonzero
g E G such that

card(bdZ(g)) ~ dim GintZ(g)'

From (32) we obtain that there exists taEbdZ(g) such that

dim G IZ(g) = dim G Iz(g), {to}'

Select t l , ... , tscZ(g) such that

(32)

dim G IIt}' = dim G I't}'\ {t} =s,
l I 0 l I o· J

By the hypothesis of Lemma 3, we have

O~j~s.

tac {ti}bcintZ(G{t,}~)cintZ(g).

This contradicts to E bdZ(g).

LEMMA 4. IffECa(T)\G and qEPdf), then for any pEG with

int{tE T: (f(t)-q(t))p(t)~O} ~E(f-PG(f)), (33)

there hold

E(f- PG(f)) c Z(G(f)) c Z(p),

Proof Let g E PG(f) such that

E(f-g) = E(f- PG(f))·

(34)

(35)

Since E(f-PG(f)cZ(g-q), we derive from (33) and (35) that there
exists A> 0 such that

Hence

E(f- Pdf)) c Z(G(f)) c Z(Ap) = Z(p).
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LEMMA 5. Suppose that G satisfies condition (I}. Then for any closed

subset YeT, G* = G I y, and hE Cor Y)\ G*, there hold

E(h - P co(h)) c int Z( GE(h- Pc.th!))'

Proof Let V=intZ(GE(h_Pc.ch )))' If (36) fails, then

A = E(h - Pco(h))\ V =f- ¢.

(36)

(37)

If dimGvIA~card(A)-l, then there exist toEA and t1, ...,trEAvV
such that

dim G I{"}~ = dim G I{,.}~, {'1: = r,

By Lemma 3 we obtain

o~j~ r.

to E {ti}o c int ZIG {,.}~) c im Z(G" u v)

=intZ(GE(h_Pc"h)))= V.

This is impossible.
If dim G v IA = card(A), set g E P co(h); then there is pEG v lye G* such

that

p( t) = h(t) - g(t) =f- 0, tEA. (38 )

Equations (37) and (38) imply

inty{tE Y: (h(t)-g(t))p(t);?;O} ::JE(h-Pc.(h)),

where int yB denotes all interior points of B in Y By Lemma 4, we have

E(h - Pco(h)) c Zip).

This contradicts (38 ) and (37). The contradictions show that (36) is true.

LEMMA 6. If G satisfies condition (I), then for any f E Co( T) and
g E P c(f), set E = E(f- P c(f)), f - g IE has zero as the unique best
approximation from G IE'

Proof We may assumefECo(T)\G. Let

h=f-g IE,

By the Kolmogorov criterion [13], we obtain

Ilf- gil = d(f, G) = d(h, G*). (39)
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Lemma 5 states

Let pEG such that
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E(h - PG*(h» c int(GE(h - Peo(h))' (40)

p IEEPG*(h), (41)

{t E E: Ih(t) - p(t)1 = d(h, G*)} = E(h - PG*(h». (42)

From (39), (40), (41), and (42), we can deduce

int{tE T: (f(t)-g(t»p(t)~O} -:::JE=E(f-PG(f».

By Lemma 4, we get

E=E(f- PG(f» c Z(p). (43)

And (39) and (43) imply E = E(h - PG*(h». Hence, h has zero as the
unique best approximation from G*.

LEMMA 7. If G satisfies condition (1), then PG(f) is HausdO/ff strongly
unique for all f E Co( T).

Proof Obviously, Pdf) is strongly unique for all f E G. Now suppose
fE Co(T)\ G. Lemma 5 and 6 tell us that

E(f- PG(f» c int Z(G E(f- Pe(f» = V.

This means that there exists rx > 0 such that

II gil E(f- Pe(f») ~ rx II gil v, gEG. (44 )

By Lemma 6, we derive that there exists f3 > 0 such that

max {g(t) sign(f(t) - PG(f, t»: t EE(f- PG(f»}

~ f3 II gil E(f- Pe(f»' gEG. (45)

By Lemma 2, we know that P G is Hausdorff continuous at f And (44), (45)
imply that statement (i) in Lemma 1 holds for r = rx . f3. Thus Pdf) is
Hausdorff strongly unique.

Remark. If Pdf) is strongly unique, then PG is Hausdorff continuous
at f But, generally, the Hausdorff strong uniqueness of PG(f) does not
imply that P G is Hausdorff continuous atf
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4. CHARACTERIZAnON OF Uc = SUc

177

In this section, we will show that if T contains no isolated points, then
Uc = SUc is equivalent to the fact that G satisfies condition (l). First we
establish some more general results.

LEMMA 8. lfdimG*<clJ, then there exists a group of sets {A;};cT
such that

dim Gr + 1= card(T\,Z(Gr + 1))'

Il'here Go = G* and G;+ 1= {gE G;: A;c Zig)}, 0 ~ i~ r.

Proof This lemma can be easily proved by induction.

LEMMA 9. Suppose f E Co( T) \ G and g E Pc(f) such that

E(f- g) = E(f- Pdf))·

~f hE Co! T) satisfies

Ilhll =d(f, G)= Ilf-gll,

int{ t E T: hit) = f(t) - g(t)}:::J E(f- Pdf)),

then

Z(G(f)) c Z(G(h)) = Z(Pdh)}.

(46)

(47)

(48j

(49)

(50,1

(50

Proof From (49), (50), we obtain that OEPc(hl and d(ll, G)=d(f, G).
IfpEPdh), then for all 0~).~1, ApEPc(h). Let

V = int{ t E T: hit) = f(t) - g(t)}.

Then for 0 < A< I,

If(t) - g(t) - Ap( t)1 = Ih( t) - ),p(t)1

~d(h, G)=d(f, G)= Ilf-gll,

By (48) and (50), we obtain that for some 0 <)." < 1,

t E V. (52)

If(t)-g(t)-J-*p(t)1 ~ Ilf-gll,

Equations (52) and (53) mean g + A*pEPdf). So

Z(G(f)) c Zig + A*P - g) = Zip),

This implies that (51) holds.

t E r\ v. (53 )
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LEMMA 10. If there exist f E Co( T) \ G and g E G such that

Z(G(f))\Z(g);6 ¢J, (54)

max{g(t) sign(f(t) - PG(f, t)): t EE(f-PG(f))} ::;:;0, (55)

then there exist hE Co( T) \ G and pEG such that

Z(G(h))\Z(p);6 ¢J, (56)

max{p(t)sign(h(t)-PG(h, t)): tEE(h-PG(h))} ::;:;0, (57)

dim G(h) = card(T\Z(G(h))). (58)

Proof Let q EPdf) such that

E(f- q) = E(f- Pdf))· (59)

Set G* = GZ(G(f))' From Lemma 8, we obtain that there is a group of sets
{Ai}~ satisfying (46) and (47). Arbitrarily choose tiEA i, O::;:;i::;:;r. From
(46) we know that there is g* E G* such that

There are CiE {-I, I}, O::;:;i::;:;r, such that

Ci(g(t;) - g*(tJ)::;:; O.

Equation (46) also implies that there exist extremal signatures [12] (Ji of
Gi supporting on Ai such that

Then

0::;:; i::;:; r.

(J i( t) . (g( t) - g*(t )) ::;:; 0, (60)

By Tietz's extension theorem and (55), (60), we can construct hECo(T)
satisfying

v = int{ tE T: h(t) = f(t) - q(t)}:::J E(f- PG(f)) = E(f- q);

Ilf- qll = d(j; G) = Ilhll; (61)

h(t) = (Ji(t), t E Ai, 0::;:; i::;:; r; (62)

max{(g(t)-g*(t))signh(t):tEE(h)}::;:;O. (63)

It follows from Lemma 9 that Z(G(f))cZ(PG(h)). So

Pdh) C GZ(G(f) = G*. (64)
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Since a i are extremal signatures of G;, 0:::;; i:::;; r, by (61), (62), and (64), we
obtain

r r

U A i = U supa;cZ(Pdh)).
i=O 1=0

Equations (64) and (65) imply

G(h) = span PG(h) c Gr + 1.

It follows from (47) that

dim G(h) = card(T\Z(G(h))).

(65)

{66)

Letp=g-g*. Then, by (54), (63), (64), and g*EGZIGUll' we obtain that

Z(G(h))\Z(p) =:J Z(G(f))\Z(p) = Z(G(f))\Z(g) i= <P, (67)

max{p(t) sign(h(t)) - PG(h; t)): t E E(h - Po(ll)}} :::;; O. (68)

Equations (66), (67), and (68) complete the proof of this lemma.

LEMMA 11. Suppose that G* is a finite-dimensional subspace of Co( T). {f'
Z E bdZ( G*), Zk E T\ Z(G*), and Zk ~ z, then there exist Ak > 0 and A!{ ~ 0
such that

lim sup Ig(zdl/A k = +:v,
k--+ -T-

(69)

Proof Assume that no Pk} satisfies (69). Then there are {g,,}ocG*
and M" > 0 such that

Z(gn) n {zdf' = q), (70\

Ig,,(zdl :::;; .M" ·!gn-,(ZkW, k = L 2, ... , n = 1, 2, .... (71)

From (70) and (71) we deduce that {gnLf is a linearly independent system
in G*. This contradicts that dim G* is finite.

LEMMA 12. If G does not satisfv condition (1), then there exist
fECo(T)\G and gEG such that

Z(G(f))\Z(g) i= q), (72)

max{g(t) sign(f(t) - PGCr. tIl: t E E(f- Pdf))}:::'; O. (73)



180 WULI

Proof By Lemma 3, there are {ti}~ such that

dim G I f [ \' = dim G I{[ }' " I[ \ = r,
\ 1'0 I 0 . l J J

(74)

(75)

Obviously, there exists an open neighborhood V of tr such that for any
gEG, trEintZ(g) implies VcZ(g). Set G*=G([;}~. Let tr+1, ...,tnEV
such that

dim G* II [ }" = dim G* Iv = n - r.
I I r+1

Select ZkEV\Z(G*) such that zk-+tr as k-+oo. By selecting a sub­
sequence, we may assume that there exist r + 1~ m ~ nand Si E { -1, I},
r~i~m, such that

dimG* I([\m u{_k,=dimG* I{[lrn =dimG* I,[}m uf- }\f[l.=ln-r,
fJr+1 .. f I/r+l t I r+l l-k tlJ

r+ 1~j~m, k?31,

and

(76)

t=Zk>

otherwise,

are extremal signatures of G*. Let g* E G* satisfy

Let Vi be open neighborhoods of t i such that

tEVi' r+1~i~m. (77)

By Lemma 11, there are 0 < Ak < 1 such that

lim sup Ig(zdl/Ak = +00,
k ---7 'X)

for gEG* with Z(g)n{zdr=tft.

Equation (74) implies that there is an extremal signature (J of G supporting
on {ti}~ such that (J(tr)=sr' By Tietz's extension theorem, we can
construct lEeo( T) satisfying

l(tJ = {~l(,tJ, 0 ~ i ~ r,
" r+ 1~ i~m,

1>/(zd'(J(tr)?3(I-Ak)' k?31,

IIIII = 1,

(78)

(79)
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E(f) c Z(G*) U (=9+ 1 V}

£J(t)?:O, tEVI' r+l~i~m.

f t (m {- (Yo ZIG'/')'l iJO U .okJl C \. I·
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(80)

(81)

(82 )

In fact, (78), (79), and (J being an extremal signature of G imply that
OEPdfl and

{ti}~ c Z(G(f)) = ZIPdf))· (83 )

Let pEPG(f) c G*. Set B = {k: p(zd . a(t r )?: O}. If B = 1/;, by the property
of {I.k }f', there is some k such that

Hence,

If(Zk) - p(zk)1 = a(tr)f(zk) - (J(trl p(zkl?: I-I.k - aUr) P(Zk)

?: 1-)·k+2Ak= 1+Ak> 1=d(f, G)= lif-pll·

This is impossible.
Now arbitrarily choose k E B. By (78) and the definition of (Jk' we have

P(ti)(Jk(t l ) =P(tI)Ci?: 0,

P(Zk )(Jk(Zk) = p(zd(J(tr)?: o.
r+ 1~ i~m,

Since (J k is an extremal signature of G*, we obtain

{ } m f" Z('t i r + 1 U l Z k ) C P),

This and (76), (83) mean that (82) is true.
From (77), (80), and (81), we obtain

max{g*(t) sign(f(t) - P aU; t)): f E E(f- P c(f))}

~ max{g*(t). sign fit): t E E(f)}';:; O. (84)

And

Z(G(f))\Z(g*)::::> {ti};:'+l #¢.

Equations (84) and (85) are the required results.

(85)
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LEMMA 13. If the Hausdorff continuity of PG at f always implies the
Hausdorff-Lipschitz continuity of PG at f, then G satisfies condition (1).

Proof Assume that G does not satisfy condition (1). Then Lemma 12
tells us that there are f E Co(T)\ G, g E G satisfying (72) and (73). By
Lemma 10, we can find hE Co(T)\ G and pEG such that (56), (57), and
(58) hold. But (58) means that Z(G(h)) is an open subset. It follows from
Theorem B that PG is Hausdorff continuous at f By the hypothesis of this
lemma, we conclude that P G is Hausdorff-Lipschitz continuous at f It is
derived from Lemma 1 that

max {p(t) sign(h(t) - PG(h, t)): t E E(h - PG(l1))} ~ r . Ilpll Z(G(lz))'

This contradicts (56) and (57). The contradiction shows that G satisfies
condition (1).

If T has no isolated points, then (58) implies that PG(h) is unique. If
UG=SUG, then Lemma 1 also ensures (84) which contradicts (56) and
(57). Thus, we have the following characteristic description of UG=SUG:

LEMMA 14. Suppose that T has no isolated points. Then G satisfies
condition (1) if and only if UG = SUG'

Proof This lemma follows immediately from Lemma 7 and the remark
above.

5. SUMMARY OF PROVED RESULTS AND SOME REMARKS

First we summarize the results proved in Section 2, 3, and 4.

PROPOSITION 1. The following are equivalent:

(i) G satisfies condition (1);

(ii) PG is Hausdorff continuous at every f E Co(T);

(iii) PG is upper Hausdorff-Lipschitz continuous at every fE Co(T);

(iv) PG is Hausdorff-Lipschitz continuous at every fE Co(T);

(v) PGU) is Hausdorffstrongly unique for allfECo(T);

(vi) Hausdorff continuity of PG at f always implies Hausdorff­
Lipschitz continuity of PG atf;

(vii) Hausdorff continuity of PGat f always implies upper Hausdorff­
Lipschitz continuity of PG at f;

(viii) Hausdorff continuity of PG at f always implies Hausdorff strong
uniqueness of PGU),



STRONG UNIQUENESS

If T has no isolated points, then all above are equiz:alent to

(ix) UG=SUG.
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Furthermore, if T is connected, then all above are equivalent to

(x) G satisfies the Haar condition.

Proof The equivalences among (i)-Ox) foHow from Lemma 1,
Lemma 2, Lemma 7, Lemma 13, and Lemma 14. Under the hypothesis that
T is connected, Blatter et at. [4] show that P G is Hausdorff continuous at
every fE Co( T) if and only if G satisfies the Haar condition. Thus (ii)
implies (x). This completes the proof of Proposition 1.

Theorem 1 is only a part of Proposition 1.

Remark. Recall that G is an almost Chebyshev subspace of Co( T) if
except for a set of first category in Col T) every function has a unique best
approximation from G [8]. There are nice characterizations about almost
Chebyshev subspaces:

THEOREM C. Suppose that T is a compact metric space and Geeo( T)

with dim G < efJ. Then the following are equivalent:

(i) G is an almost Chebyshev subspace;

(ii) if VeT is open and dim G v?; 1, then card( V) = dim G I v;

(iii) SUG is dense in ColT);

(iv) if PG is Hausdorff continuous at 1, then F'eU) is unique.

The equivalence of (i) and (ii) is proved by Garkavi [8J; Niirnberger
and Singer show the equivalence of (i) and (iii) [14]; Bartelt and Schmidt
[2] establish the equivalence of (i) and (iv).

Actually, if T is a locally compact Hausdorff space, then (i) = (ii)-=
(iii)=-(iv) (see [2,8,14]). On the other hand, if G satisfies (ii) in
Theorem C, then (58) implies that Pc(h) is unique. Thus, we have the
following corollary of Proposition 1 and Theorem C:

COROLLARY 2. If G is a finite-dimensional almost Chebyshev subspace of
ColT), then the statements (i)-(x) in Proposition 1 are mutually equivaleni.

We leave the details to the interested reader.

Remark. Generally, if T contains isolated points, the equivalence of (i)
and (v) in Theorem 1 may not be true. For example, let Go be any finite­
dimensional subspace of C[O, 1]. Let T= [0,1] u { -I}. Define

G={gEC(T)=g![O,I]EGO }'

640.56.2-5
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Then dim G = dim Go + 1. For any fE C(T), fE UG if and only if fE G. So
UG = SUG • But it is easy to check that G satisfies (i) if and only if Go
satisfies the Haar condition. Thus (i) and (v) in Theorem 1 are not
equivalent if Go is not a Haar subspace of C[O, 1].
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