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We generalize the concept of strong uniqueness of the metric projection P; under
Hausdorff metric. We show that, under this metric, the following statements are
equivalent:

(i) P is continuous;
(ii) Pg is pointwise Lipschitz continuous;
(ili) Pg is pointwise strongly unigue.

'€ 1989 Academic Press, Inc.

1. INTRODUCTION

Let 7 be a locally compact Hausdorff space and let Co(7T") be the Banach
space of real-valued continuous functions f on 7 which vanish at infinity,
ie., the set {re T:|f(1)] = ¢} is compact for every ¢>0. Co(7T) is endowed
with the supremum norm:

I£1l=sup{|f(r)]:te T}
For two subsets 4, B in Cy(T), defline

d(A, B)=sup inf || f—g|.

fed 8€B

D(A, By=max{d(A4, B), d(B, 4)}.

Here D(A, B) is called the Hausdorff metric of 4 and B. For a finite-dimen-
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sional subspace G of Cy(7), the metric projection P from Ci(7) to G is
defined as

Po(f={geG: | f—gl=d(f,G)}, felD)

There are very nice characterizations which ensure the unigueness of P,

THEOREM A. Suppose that G is a finite-dimensional subspace of Cy{TL
Then the following are equivalent.

(1) G satisfies the Haar condition; ie., every nonzero ge G has at
most dim G — 1 zeros;
(it}  Pg{f) is unigue (ie., is a singleton) for all fe C(T)

() for every fe Co(T), Ps([f) is strongly unique; ie., there exists
#{(fV> 0 such that

| f—gl=zdf,G)+r(f) llg—Ps(f)l. g€G;

{ivy  for every fe Cy(T), Pg is Lipschitz continuous at f, ie., there
exists s{ f ) >0 such that

1Po(f)— P <s(f)-If—al.  heCu(T)
Furthermore, if T=1[a, b], then all the above are equivalent to
(V) LrGZS(]G,

where Ug={fe Co(T): Po(f) is unique} and SUgz={fe C{T): Pe(f) is
strong unique }.

The equivalence of (i) and (ii) is proved by Young [16], Haar [9], and
Phelps [15]. Freud shows that (i) implies (iv} {7]. That (i) implies (iii} is
a result of Newman and Shapiro [12]. The equivalence of (i) and (v} is
sstablished by MacLaughlin and Somers [11]. And Cheney proves thai
{1ii} implies (iv) [6]. Now the Lipschitz continuity and strong unigueness
of P become an interesting topic in approximation theory {see [1, 2, 3, 13,
147 and references therein).

The main purpose of this paper is to develop an analogous theorem for
the multi-valued metric projection P,;. A natural generalization of strong
unigueness for the multi-valued metric projection P, seems to be the
following:

DerNITION.  P,(f) is called Hausdorff strongly unique if there exisis
7(f)>C such that

If—glzdlf,G)+r(f) -dg Ps(f). g€C
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Recall that P is Hausdorff continuous at fif

im  sup D(P,(f), Po(h))=0;

20T -y <e

and P is Hausdorff-Lipschitz continuous at fif there exists s(f) > 0 such
that

D(Ps(f), Pe(h)) <s(f)-If—hll,  heCo(T).

Then the main results of this paper can be summarized as follows:

THEOREM 1. Suppose that G is a finite-dimensional subspace of Cy(T).
Then the following statements are mutually equivalent:

(i) for every nonzero ge G,
card(bdZ(g))<dim{pe G:int Z(g)=Z(p)} — 1; (1

(ii) Pg is Hausdorff continuous at every fe Cy(T);

(i) Pg(f) is Hausdorff strongly unique for all fe Co(T);

(iv) Pg is Hausdorff-Lipschitz continuous at every € Co(T).
If T contains no isolated points, then all above are equivalent to

(v) Ug=SUs.

Furthermore, if T is connected, then all above are equivalent to the fact that
G satisfies the Haar condition.

Here Z(g) is the set of all zeros of g and card(bdZ(g)) denotes the
cardinal number of the boundary set of Z(g).

By Theorem 1 we know that condition (1) is a natural generalization of
the Haar condition and generally SU; = Uy is not a characteristic descrip-
tion of the Haar condition.

Remark. A nonintrinsic characterization of Hausdorff continuous
metric projections was given in [4]. A consequence of this result is that P
is Hausdorff continuous if and only if G satisfies the Haar condition,
provided that T is connected [4]. Moreover, for T=N (ie., Co(T)=c¢,) it
was proved in [4] that P, is Hausdorff continuous and in [14] that
Us;=SUg for an arbitrary finite-dimensional space G of C,.

2. THE EQUIVALENCE OF HAUSDORFF STRONG UNIQUENESS
AND HAUSDORFF-LIPSCHITZ CONTINUITY

From now on, we always assume that G is a finite-dimensional subspace
of Co(T). Since P, is upper semicontinuous (ie, for any fe Cy(T),
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d{Ps(h), Ps(f))—0as h—>f), Pg;is Hausdorff continuous at f'if and only
if P is lower semicontinuous at f (i.e., d(Pg(f), Pg(h)})— 0 as i— f). Our
proofs are based on the following theorem:

Tueorem B. P, is Hausdorff continuous at f if and only if

E(f—P(fNcint{teT:p(t1)—g(t)=0 for all p,gePyf)}, where
E(f—Ps(f))={teT:|f(t)-g(t)l =d(f, G) for all ge Ps(f}}.

Theorem B is announced in [57] and can be deduced from the proof of
Theorem 2 in [4].

First we show that Hausdorff strong unigueness is closely related to
Hausdorff-Lipschitz continuity.

LEMMA 1. Suppose that Pg is Hausdorff continuous a: fe Cy(T).G.
Then the following statements are mutually equivalent:

(1) there exists r >0 such that
sup{(f(1)~Po(f)) p(t): te E(f— P/ N}z llplv.  peG,

where V=int{re T:p(t)—g(t)=0 for all p,gePs{f)} and |p|,=
sup{|p(#)|:1e V};
(11} Pg{f) is Hausdorff strongly unique;

(iii} P is upper Hausdorff-Lipschitz continuous at [, i.e., there exists
§>0 such that

d(Po(h), Po(f))<s-Ilh—f1,  ~eCy(T);
{(iv} P is Hausdorff-Lipschitz continuous at f.
Proof. We first show some simple facts. From Theorem B, we have
E(f-Pg(f)) V. (2)
Set g* € Pg(f) such that
E(f—g*)=E(f—Ps(f))=V. (3)
Let d =d(f. G) —max{|f(r)—g*(t)}: re T\ V}. Then
g¥+pePf), for peG with VcZ(p) and |p|<d. (4}
Set G(f)=span{p—g:p, g€ Ps(f)}. Then for some ¢>0,

dp, G(fN<clply, peG. (5)

640, 56,2-4
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In fact, if (5) fails to be true, then for some pe G\ G(f),
VeZ(p).
From (4) we obtain that for some 1. >0, g*+Ape P(f), ie.,
peG(f)A=G(f)

This is impossible.

Now we begin to investigate the relations among the statements in
Lemma 1.

(i) = (ii). By (i) and the strong Kolmogorov criterion [13], we deduce
that there exists r(f)> 0 such that

If=plZd(f, GY+r(f)-lp—Ps(Nlv, PeGC (6)

Assume that statement (ii) is not true; i.e., there exist p, € G\ Pg(f) such
that

1
If=pall <d(f. G)+—d(p,. Pe(f)),  n>1. (7)

Let g, € Po(f) such that d(p,, Po(f)) = p,— gl From (6) and (7) we get

“pn_gnHV/”pn_gn”_>05 as n-—» . (8)

By selecting a subsequence, we may assume

(pn_gn)/“pn_gn”—’p, as #n-— oo.
Equation (8) implies ¥ = Z(p). By (5), pe G(f). Set

qn=gn+ ”pn_gn” D

Since ||pn_qr1”/d(pn,PG(f)):||pn_qn1|/||p:1*gn|l_>O as n—> o, WC
obtain that

Ay, Po())d(p,, Po(f))—>1  as n—co.

Thus we derive from (7) that

Uf = gall — d(f. G))/d(g,, Ps()) >0  as n—co. 9)

But VcZ(p)nZ(g,—g*)=Z(q,—g*) and q,& Ps(f). By (4), there
exists 1> 4,> 0 such that

g*+2.(q,—g*)e Ps(f), (10)
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and
g¥+ Mg, —g*)EPLS), for 1>4,. (1n)

Set u,=g*+ 4,(¢9,—g*). From (10) and (11) we obtain

max {(f(¢) —u,())q.(1) —g*(t)): t€ E(f—u, )\ V} >0 (12}
Let t,e £E(f—u,)\ V such that

(f(t,) = u,(1,))q,(2,) — g*(1,)) = 0.
Then
19.(1,) —&* (1) 2 [ f(1,) —u,(1,)| — | f(2,) — g*(1,)]
=d(f, G)—|f(1,)—g*(1,)| = 0.

And

1=, Z1/(1,) = q.(1,)]
=1f(1,) —un(t,) + (1 = A, )gl1,) —g* (1))l
=|f(1) —u,(t) + (1= 2,) 1g,(1,} —g*(1,)]
=d(f,GY+{1—1,)0. (13
But for some K>0, |lg,—g*| <K So
g, Pl /)<l —u,l =(1=14,)-llg,—g*I < K(1—-2,). (14}

Equations (13) and (14) contradict (9). This proves that (i) implies (ii).
(ii}=(i). Suppose

lp=fllzd(f.Gy+s(f)-dip, Pe(f), peG. (15}

If (i) is false, then there exists p € G such that
Ipllv>0, (16}
sup{(f (1)~ P(f)) p(t): te E(f— Ps(f)}} <O. {17}

From (17) we obtain that there exists an open set W > E(f— Ps{(f)) such
that

p(t)-sign(f(t) —g*(1)) < —s(f)d(p, G(/))/2, reW. (18}
Let e=d(f, G)—max{|f(1)—g*(1)l: 1€ T\ W} >0. Then

[ F(ty—g*(¢)—r-p(t}] < d(f, G), O<r<eg/lp| and r1eT\ W (193

\
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Choose #,€ T such that

Wf—g*—r-pll=I1f(z,)—g*(t,)—r p(t,)]

=[1/()—g*(t N —r-p(1,) - sign(f(1,) — g*(2,) — g*(1,))I.
(20)

If 0 <r<¢/| pl, then (19) implies ¢, € W. It follows from (18) and (20) that
I f—g*—r-pl<d(f, G)+r-s(f)-d(p, G(f))/2. (21)

But d(g* + r-p, Po(f)) = d(r-p, Pe(f) — g*) = d(r-p, G(f)) =
r-d(p, G(f)). This means that (21) contradicts (15).
(ii) = (iii). Suppose

If=pl=d(f, G)+r(f)-dp, Ps(f)), peG.
For any pe Ps(h), we have
r(f)-d(p, Po(fN < | f~pl—4d(f, G)
<|f=hl+lh—pll —d(f, G)
=|/—hll+dh, G)—d(f,G)<2 | f—hll.
Hence
d(Ps(h), PN S2-If=hI/r(f),  heCyT).

(ili)=-(i). Assume that statement (i) fails to be true; i.e., there exists
p € G such that

sup{(f(£)— Ps(f. 1)) p(t): t€ E(f— P&(f))} <0, Iplly#0.
Define

) =1f0)—g*() —a- p(1) 14 F6) + &*(1) + ap(1),

where
b, x=bh,
[x]2= { x, a<x<b,
a, x<a.
It is easy to check that
g* +ape Ps(f,),

(22)
I f—ful/e—=0 as a—0™.



STRONG UNIQUENESS 171
But
d(Ps(f,), Pe(f)) = d(g* +op, Plf))
zd(op, G(f))za-|pl ., for a>0. {23}

Equations (22) and (23) contradict the fact that P, is upper
Hausdorff-Lipschitz continuous at f.

(iii) = (iv). Since P is upper Hausdorff-Lipschitz continuous at f, for
any pe Pg{h) and ge Ps(f),

ip—gllv<dp, Po(fN<s(f)- IRl (24}
By (5) and (24), we obtain
dp—g G(fN<c-lp—glv<c-stfy-|/—hl. (25)
For ge Ps(f), define
(g)=d(f, G)—max{|f(t)—g(1)l: 1e T\ V'}.
Suppose g € P{f) such that
o(g)=(c-s(f)+2)-If—Al.
From (25) we obtain that for some pe Pih) and g G(f).
lg—p—qli<c-s(f)-1f—hl.
For te T\ V,
(h(r) —p(1) —q()|
<IA) =S (Ol + 1 /(1) — g(O)] + | g(1) — pl1) + g(2)]

< f—hl+d(f, G) = (c-s(f)+2) I f = Al +c-s(f) | f— Al
<d(f, G)— | f—hl <d(h, G)

For teV,
|h{(£) — p(1) — q(1)| = |h(1) — p(1)| < d(h, G).

Thus p+ge Pg(h) and

d(g. P(h))<lig—p—qli <c-s(f)-If—Al. (26)
Set

o= (eos()+2) " min {3, d(f, ) -5}
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Suppose
I f—hll <e.

For ge Po(f) with 6(g) < (c-s(f)+2) |[f— A, define

0
w={re T\ 110 g0l dlf, 6)-3),

Since |f(t) —g*(¢)| <d(f, G)— 6, we obtain

(f()—g(1))(g(t)—g*(1)) =20, teW, (27)

0
8(1) —g*()1 =3 teW. (28)

Let
A=(c-s(I+2) 1 f—hll/lg—g*I
Then from (27) and (28) we deduce
Lf(1) —g(1) — A(g(1) —g*(1))|

= /(1) —g(0) =4 |g(1) —g*()]

<d(f, G)—4-9/2

<d(f,G)—(c-s(/)+2)-I1f—hl, 1eW.
But for re T\(V'u W), we have

|/(2) —g(2) — A(g(1) — g*(1))]

<d(f, G)—g+(C~S(f)+2) L= Al

<d(f, G)—(c-s(f)+2)-Ilf—Al.
Thus
og+ig—g*)) = (c-s(f)+2-If—nAl.
By (26) we get
d((g+MHg—g*)) Pe(h))<c-s(f)- Il f—hll.
And
d(g. Pg(h))<c-s(f)-If=hl +11A(g—g*)]
<2e-s(f)+ 1) ILf—Al.
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Hence
d(P(f) Ph)) <2c-s(f)+ 1 f—hl,
he Co(T) withlf—hll<e. {29}
But (29) implies that for some K>0 [2],
dP(f), PeM)<K-lIf—hl.  helT)
Let M=K+ s(f). Then
D(PG(f), Peth) < M-\ f—hl,  hely(T).
(ivj= (iii). Tt is trivial.
The proof of Lemma 1 is completed now.

CoroLLARY 1 [21. If Po(f) is unigue, then the following are equivalent:

(i} Pgl[f) if strongly unique;
(i) Pg is Hausdorff-Lipschitz continuous at f.

Proof. Since Ps(f) is unique, Ps(f) is Hausdorff sirongly unique if and
ouly if Pg{(f) is trongly unique. Thus the corollary follows immediately
from Lemma 1.

Lemma 1 can be considered as a generalization of Corollary 1 for multi-
valued P,(f 1

3. HAUSDORFF STRONG UNIQUENESS

In this section, we will show that if G satisfies condition (1), then P.{/}
is Hausdorff strongly unique for every fe Cy(T).
From now on, we make use of the following notation:

Gg={geG:BcZ(g)}, BT
Z(Gg)={teT: g(t)=0forallge G,}.
LemMma 2 [10]. G sarisfies condition (1) if and only if Pg is Hausdorff
continuous ai every fe Cy(T).
LemMa 3. G satisfies condition (1) if and only if for any {1,}5< T with

dlmG|{,‘;6=dlmG| =7, QSJSF, {30}

r r fe Y
il U
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there hold
{t.}o=int Z(G ). (31)

Proof. Necessity. It is an immediate corollary of Lemma 4 in [10] and
Lemma 2.

Sufficiency. Assume that G does not satisfy (1), i.e., there exists nonzero
g € G such that

card(bdZ(g)) = dim Gy z(4)- (32)
From (32) we obtain that there exists ¢, € bdZ(g) such that
dim G [z =dim G | z,). (15} -
Select ¢, ..., t, = Z(g) such that
dim G |y =dim G [ (35, ¢y =S5, 0<j<s.
By the hypothesis of Lemma 3, we have
toc {4} cint Z(G ;) < int Z(g).

This contradicts t,ebdZ(g).

LeMMA 4. If fe Co{T)\G and g P;(f), then for any pe G with
int{re T: (f(1) —q(1)) p(t) 2 0} 2 E(f— Ps(f)), (33)
there hold
E(f— Pl /) = Z(G(f)) = Z(p), (34)
where G(f)=span{g, —g,:81, 826 Po(f)}-
Proof. Let ge P.() such that
E(f—g)=E(f—Ps(f)). (35)

Since E(f—Ps(f)=Z(g—q), we derive from (33) and (35) that there
exists 4 >0 such that

g+ipe Ps(f)

Hence

E(f—Pe(f)) = Z(G(f)) = Z(4p) = Z(p)-
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LemMa 5. Suppose that G satisfies condition (1). Then for any closed
subset Y T, G¥=G |y, and he Co( Y)\G*, there hold

E(h— Poo(h)) <int Z(G g pouny): (

a2
(@)}

Proof. Let V=int Z(G gy, _ pyuny)- If (36) fails, then
A=Eh— P\ V#¢. {37)

If dim G, |, <card(4)— 1, then there exist r,e 4 and ¢,
such that

t,eAu¥V

T

dim G |{,,}5=dim Gli i) =1 0<j<gr
By Lemma 3 we obtain
toe{tijocint Z(Gy, ) cint Z(G . v)
=int Z(G g pounp) = V.

This is impossible.
If dim G, |, =card(A4), set g€ Ps.(h); then there is pe G, |, < G* such
that

plr)=h{r)—g(t)#0, te A {38}
Equations (37) and (38) imply
int,{re ¥: (h(t) — g(1)) p(1) >0} = E(h — Pgu(h)),
where int, B denotes all interior points of B in Y. By Lemma 4, we have
E(h— Pg+(h)) = Z{p).
This contradicts (38 ) and (37). The contradictions show that (36) is true.
LEMMA 6. If G satisfies condition (1), then for any fe Co(T) ang

geP.(f), set E=E(f—P.(f))., f—gl|r has zero as the unique bes:
approximation from G | ¢.

Proof. We may assume fe Co(T)\G. Let
h=f—glg G*=G |
By the Kolmogorov criterion [13], we obtain

I f—gll =d(f, Gy =d(h, G*). (3%}
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Lemma 5 states

E(h— Pg+(h) ©int(G g — poeny))- (40)

Let p e G such that
P g€ Pg«(h), (41)
{te E:|h(t)—p(1)| = d(h, G*)} = E(h— Pg+(h)). (42)

From (39), (40), (41), and (42), we can deduce
int{re T: (f()—g(1)) p(1) >0} = E= E(f — Po(f)).
By Lemma 4, we get
E=E(f—Ps(f))=Z(p) (43)
And (39) and (43) imply E= E(h— Pg.(h)). Hence, h has zero as the
unique best approximation from G*.
LemMma 7. If G satisfies condition (1), then Pg(f) is Hausdorff strongly

unique for all fe Co(T).

Proof. Obviously, Pg(f) is strongly unique for all fe G. Now suppose
fe Co(T)\G. Lemma 5 and 6 tell us that

E(f—Ps(f))cint Z(G g pyry)=V.
This means that there exists o > 0 such that

”g”E(ffPG(f))Sa I &llys geG. (44)

By Lemma 6, we derive that there exists § > 0 such that

max { g(z) sign(f(1) — Po(f. 1)): t€ E(f— Ps(f))}
Zﬁ”g”E(ffPo(f))’ gEG- (45)
By Lemma 2, we know that P is Hausdorff continuous at f. And (44), (45)

imply that statement (i) in Lemma 1 holds for r=a-f. Thus P;(f) is
Hausdorff strongly unique.

Remark. 1If Pg(f) is strongly unique, then P is Hausdorff continuous
at f. But, generally, the Hausdorff strong uniqueness of Ps(f) does not
imply that P is Hausdorff continuous at f.
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4, CHARACTERIZATION OF U, = SUg

In this section, we will show that if T contains no isolated points, then
U,= SU, is equivalent to the fact that G satisfies condition (1). First we

establish some more general results.

Lemma 8. If dim G* < o0, then there exists a group of sets {A}< T

such rhat

Gilay=G;l4 ry=card(4;) - 121, xeAd;. 0<i<r,

dim G, ., =card(T\ Z(G, . )},
where Go=G* and G, = {ge G, A,c Z(g)}, 0<i<r.
Proof. This lemma can be easily proved by induction.
LEMMAa 9. Suppose fe Co( T)\G and ge P, f) such tha:
E(f—g)=E(f—Ps())
If he Co(T) satisfies
Il =d(f, G)=17/—zgll,
int{re T: h(t)=f(t) —g(1)} > E(f— Pc(/ )},

then

Z(G(f)) = Z(G(h)) = Z(Pg(h)).

Proof. From (49), (50), we obtain that Qe P (h) and dih, G) =

If pe Pglh). then for all 0< A< 1, Ape Ps(h). Let
V=int{te T h(1)=f(t)—g(1)}.
Then for 0 <A<,
[f(t) — g(1) = Ap(1)| = |h(1) — Ap(1)]
<dlh, G)=d(f,G)=1f-¢gl, 1€V
By {48) and (50), we obtain that for some 0 < i¥* < 1,
) —g(t)=A*p()I < | f—gll, teT V.
Equations (52) and (53) mean g+ A*pe Ps{f). So
Z(G(f) = Z(g+*p—g)=Z(p),  pePslh).
This implies that (51) holds.

i/,

(46)
(47

(52}
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LemMA 10. If there exist fe Co(T)\G and ge G such that

Z(G(/INZ(g) #¢» (54)
max{g(t) sign(f(1) — Po(f, 1)): t e E(f — P(/))} <0, (55)
then there exist e Co(T)\ G and p e G such that
Z(GIMN\Z(p) # ¢, (56)
max { p(¢) sign(h(t) — Pg(h, t)): 1€ E(h— Pg(h))} <0, (57)
dim G(h)=card(T\ Z(G(h))). (58)

Proof. Let ge Pg(f) such that
E(f—q)=E(f—Pg(f)) (59)

Set G* = Gz From Lemma 8, we obtain that there is a group of sets
{A;}5 satisfying (46) and (47). Arbitrarily choose t;,€ 4;, 0<i<r. From
(46) we know that there is g* € G* such that

(0 )} o= zie—gn

i=0

There are ¢, { —1, 1}, 0<i<r, such that
elg(t;)—g*(4,)<0.

Equation (46) also implies that there exist extremal signatures [12] o, of
G, supporting on A, such that
ot;)=¢;: oisr.
Then
afr)-(g(t)—g*(t))<0, red, O<i<r (60)

By Tietz’s extension theorem and (55), (60), we can construct #e Cy(T)
satisfying

V=int{re T: h(t) =f(1)— q(t)} > E(f— Po(f)) = E(f— q);

I f—qll =d(f; G)= Al (61)
ht)=0t), ted, 0<i<r (62)
max{(g(t)—g*(r)) sign (z): te E(h)} <0. (63)

It follows from Lemma 9 that Z(G(f)) = Z(Pg(h)). So
Po(h) < G2y = G*. (64)
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\,

Since ¢, are extremal signatures of G;, 0 <i<r, by (61), (62), and (64), we
obtain

U 4:= sup a,= Z{P4(h)) (65}
i=0 =0
Equations (64) and (65) imply
G{h)=span Po(h}=G._,.
It follows from (47) that
dim G(h) =card(T\ Z(G(h))). {66}

Let p=g—g*. Then, by (54), (63), (64), and g* € G4y, We obtain that
Z(GMNZ(p) = Z(IG(fINZ(p) = Z(G(f N\ Z(g) # ¢, (67)
max{ p(t) sign(h(1)) — Pslh; 1)): 1€ E(h— Pg(h))} <0. (68)

Equations (66), (67), and (68) complete the proof of this lemma.

LemMMa 11. Suppose that G* is a finite-dimensional subspace of Co(T). If
zebdZ(G*), z, € T\Z(G*), and z, — z, then there exist A, >0 and 1, —0
such thar

lim sup |g(z N/ A=+, forallgeG* with Z(gyn{z}F=¢.

k— =

(69

o

Proof. Assume that no {4,} satisfies (69). Then there are {g,}* = G*
and M, >0 such that

Z(g) 0 {zieiv =9, (70

g,z NS M, - 1g, 1201’ k=12,..n=12 .. (71}

From (70) and (71) we deduce that {g,}T is a linearly independent system
in G*. This contradicts that dim G* is finite.

LemMma 12. If G does not satisfy condition (1), then there exisi

fe ColT)\G and ge G such that

Z(G(fINZ(g) # ¢,
max{g(?) sign(f(1) — Ps(f, 1)): 1€ E(f— Po(f))} <0.

-~
~3
[ 3]
s

-~
~J
w
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Proof. By Lemma 3, there are {7,}} such that

dim G |,y =dim G [y, =1, 0<O<r, (74)
Obviously, there exists an open neighborhood V of ¢, such that for any

geG, r,eint Z(g) implies V<= Z(g). Set G*=G,yr. Let 4,4, .., t,€V
such that

dim G* [,y =dim G* [, =n—r.
Select z,e V'\Z(G*) such that z, -1, as k— oo. By selecting a sub-

sequence, we may assume that there exist r+1<m<n and ¢;e {—1,1},
F<i<m, such that

dim G* |y, o (g =dim G* [y, =dim G* [ ym o gy =m =1,
r+l<j<m, kzl, (76)
and
& t=1, r+l<is<m,
O-k(t):: Eps t=zka
0 otherwise,
are extremal signatures of G*. Let g* e G* satisfy
grt)=—¢, r+l<ism
Let V, be open neighborhoods of ¢, such that
g, g*(1)<0, teV,, r+l<i<m (77)

By Lemma 11, there are 0 <1, <1 such that

limsup [g(z,)|/A, = +0, for geG* with Z(g)n{z, )P =4
k— o

Equation (74) implies that there is an extremal signature ¢ of G supporting
on {1;}5 such that o(s,)=¢,. By Tietz’s extension theorem, we can
construct fe Cy(T) satisfying

O'(t,—), 0<l<r5
g; r+1<ig<m,

i

f(t,-)={ (78)

1>f(ze)-0(t)=(1—-4), k=1,
=1, (79)
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snezieu( U v) (30)
fertl
e f(1)=0, teV, r+i<gi<m. (81;
We first show that
gz = ZIGU ). (82}

In fact, (78), (79), and ¢ being an extremal signature of G imply that
Oe P,/ and

{t:36= Z(G(f N = Z(P(/)). (833

Let pe P{f)= G*. Set B={k:p(z,)-0(1,}=0}. If B=4¢, by the property
of {4,}. there is some £ such that

—0o(t,) Plzg) 2 24,
Hence,
f(ze) —plze) = 0(1,) fzi) —o(t,) p(zi) = | — Jp — 0(1,) p(z4)
21—+ 20 =1+ 4> 1=d(f, G)= | f-pi.

This is impossible.
Now arbitrarily choose ke B. By (78) and the definition of ¢,, we have

p(r)oe(t,)=p(t)e; =0, re1<i<m,
p(z) oz = plzi)o(t,) 2 0.
Siace o, is an extremal signature of G*, we obtain
{throwlad = Z(p),  pePolf)

This and (76), (83) mean that (82) is true,
From (77), (80), and (81), we obtain

max{ g*(t) sign(f(1) — Po(f, ) te E(f— Ps( )}
<max{g*(¢)-sign f(¢): te E(f)} <0. (84}
And
ZIGUIINZ(g*) = {137 # 0. (85}

Equations (84) and (85) are the required results.
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LemMa 13. If the Hausdorff continuity of Pg at [ always implies the
Hausdorff-Lipschitz continuity of Pg at f, then G satisfies condition (1).

Proof. Assume that G does not satisfy condition (1). Then Lemma 12
tells us that there are fe Co(TW\G, ge G satisfying (72) and (73). By
Lemma 10, we can find #e Co(T)\G and pe G such that (56), (57), and
(58) hold. But (58) means that Z(G(4)) is an open subset. It follows from
Theorem B that P is Hausdorff continuous at f. By the hypothesis of this
lemma, we conclude that P is Hausdorff-Lipschitz continuous at f. It is
derived from Lemma 1 that

max{p(t) sign(h(t) — Pg(h, 1)): 1€ E(h— Po(h))} 27 1P|l 2i6m)-

This contradicts (56) and (57). The contradiction shows that G satisfies
condition (1).

If T has no isolated points, then (58) implies that Pg(4) is unique. If
Ug=SU,;, then Lemma 1 also ensures (84) which contradicts (56) and
(57). Thus, we have the following characteristic description of U, = SUy,:

LemMa 14, Suppose that T has no isolated points. Then G satisfies
condition (1) if and only if U= SUg.

Proof. This lemma follows immediately from Lemma 7 and the remark
above.

5. SUMMARY OF PROVED RESULTS AND SOME REMARKS
First we summarize the results proved in Section 2, 3, and 4.

PROPOSITION 1. The following are equivalent:

(i) G satisfies condition (1),
(i) Pg is Hausdorff continuous at every fe Cy(T);
(iit) Pg is upper Hausdorff—Lipschitz continuous at every fe Co(T);
(iv) Pg is Hausdorff-Lipschitz continuous at every fe Co(T);
(v) Pg(f) is Hausdorff strongly unigue for all fe Co(T);
(vi) Hausdorff continuity of Pg at f always implies Hausdorff-
Lipschitz continuity of P atf,
(vii) Hausdorff continuity of Pg at f always implies upper Hausdorff—
Lipschitz continuity of Pg at f,
(viii) Hausdorff continuity of Pg at f always implies Hausdorff strong
uniqueness of Pg(f).
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If T has no isolated points, then all above are equitvalent to
(ix) Ug=8U,.
Furthermore, if T is connected, then all above are equivalent to
(x} G satisfies the Haar condition.

Proof. The equivalences among (i)-(ix) follow from Lemma I,
Lemma 2, Lemma 7, Lemma 13, and Lemma 14, Under the hypothesis that
7 is connected, Blatter et al. [4] show that P, is Hausdorff continuous at
every fe Co{T) if and only if G satisfies the Haar condition. Thus {ii)
implies (x). This completes the proof of Proposition 1.

Theorem 1 is only a part of Proposition 1.

Remark. Recall that G is an almost Chebyshev subspace of Cy{7} if
except for a set of first category in Cy(T) every function has a unique best
approximation from G [8]. There are nice characterizations about almost
Chebyshev subspaces:

THeorREM C. Suppose that T is a compact metric space and G C{T;
with dim G < oo, Then the following are equivaien::
(i} G is an almost Chebyshev subspace;
(it} if VT is open and dim G . = 1, then card(V}=dim G | ;
(iit) SUyg is dense in Cy(T);
(iv) if Pg is Hausdorff continuous at f, then Fo(f) is unique.

The equivalence of (i) and (ii) is proved by Garkavi [8]; Niirnberger
and Singer show the equivalence of (i) and (iii) [ 147; Bartelt and Schmidt
[ 2] establish the equivalence of (i) and (iv).

Actually, if T is a locally compact Hausdorff space, then (i}=(ii)<
(ili) = (iv) (see [2,8,147). On the other hand, if G satisfies {ii) in
Theorem C, then (58) implies that P.(#) is unique. Thus, we have the
following corollary of Proposition 1 and Theorem C:

COROLLARY 2. If G is a finite-dimensional aimost Chebyshev subspace of
Co(T), then the statements (i)~(x) in Proposition 1 are mutually equivaleni.

We leave the details to the interested reader.

Remark. Generally, if T contains isolated points, the equivalence of (i}
and (v) in Theorem 1 may not be true. For example, let G, be any finite-
dimensional subspace of C[0, 1]. Let T=[0, 1]Ju { —1}. Define

G={geC(T)=g|[0,1]1G,}.

640.56,2-5
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Then dim G =dim G4+ 1. For any fe C(T), fe Uy if and only if feG. So
Us;=SU;. But it is easy to check that G satisfies (i) if and only if G,
satisfies the Haar condition. Thus (i) and (v) in Theorem 1 are not
equivalent if G, is not a Haar subspace of C[0, 1].

~

12.

13.

i4.

15.

16.
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