Strong Uniqueness and Lipschitz Continuity of Metric Projections:
 A Generalization of the Classical Haar Theory

Wu Li*
Department of Mathematics, Hangzhou University, Hangzhou, Zhejiang, People's Republic of China
Communicated by Frank Deutsch
Received October 6, 1986; revised March 22, 1987

Abstract

We generalize the concept of strong uniqueness of the metric projection P_{G} under Hausdorff metric. We show that, under this metric, the following statements are equivalent: (i) P_{C} is continuous; (ii) P_{G} is pointwise Lipschitz continuous; (iii) P_{C} is pointwise strongly unique.

1. Introduction

Let T be a locally compact Hausdorff space and let $C_{0}(T)$ be the Banach space of real-valued continuous functions f on T which vanish at infinity, i.e., the set $\{t \in T:|f(t)| \geqslant \varepsilon\}$ is compact for every $\varepsilon>0 . C_{0}(T)$ is endowed with the supremum norm:

$$
\|f\|=\sup \{|f(t)|: t \in T\}
$$

For two subsets A, B in $C_{0}(T)$, define

$$
\begin{gathered}
d(A, B)=\sup _{f \in A} \inf _{g \in B}\|f-g\|, \\
D(A, B)=\max \{d(A, B), d(B, A)\} .
\end{gathered}
$$

Here $D(A, B)$ is called the Hausdorff metric of A and B. For a finite-dimen-

[^0]sional subspace G of $C_{0}(T)$, the metric projection P_{G} from $C_{0}(T)$ to G is defined as
$$
P_{G}\left(f=\{g \in G:\|f-g\|=d(f, G)\}, \quad f \in C_{0}(T)\right.
$$

There are very nice characterizations which ensure the uniqueness of P_{G}.
Theorem A. Suppose that G is a finite-dimensional subspace of $C_{0}(T)$. Then the following are equivalent:
(i) G satisfies the Haar condition; i.e., every nonzero $g \in G$ has at most $\operatorname{dim} G-1$ zeros;
(ii) $P_{G}(f)$ is unique (i.e., is a singleton) for all $f \in C_{0}(T)$;
(iii) for every $f \in C_{0}(T), P_{G}(f)$ is strongly unique; i.e., there exists $r(f)>0$ such that

$$
\|f-g\| \geqslant d(f, G)+r(f) \cdot\left\|g-P_{G}(f)\right\|, \quad g \in G
$$

(iv) for every $f \in C_{0}(T), P_{G}$ is Lipschitz continuous at f, i.e, there exists $s(f)>0$ such that

$$
\left\|P_{G}(f)-P_{G}(h)\right\| \leqslant s(f) \cdot\|f-h\|, \quad h \in C_{0}(T)
$$

Furthemore, if $T=[a, b]$, then all the above are equivalent to
(v) $U_{G}=S U_{G}$,
where $U_{G}=\left\{f \in C_{0}(T): P_{G}(f)\right.$ is unique $\}$ and $S U_{G}=\left\{f \in C_{0}(T): P_{G}(f)\right.$ is strong unique $\}$.

The equivalence of (i) and (ii) is proved by Young [16], Haar [9], and Phelps [15]. Freud shows that (i) implies (iv) [7]. That (i) implies (iii) is a result of Newman and Shapiro [12]. The equivalence of (i) and (v) is established by MacLaughlin and Somers [11]. And Cheney proves that (iii) implies (iv) [6]. Now the Lipschitz continuity and strong uniqueness of P_{G} become an interesting topic in approximation theory (see $[1,2,3,13$, 14] and references therein).

The main purpose of this paper is to develop an analogous theorem for the multi-valued metric projection P_{G}. A natural generalization of strong uniqueness for the multi-valued metric projection P_{G} seems to be the following:

Definition. $\quad P_{G}(f)$ is called Hausdorff strongly unique if there exists $r(f)>0$ such that

$$
\|f-g\| \geqslant d(f, G)+r(f) \cdot d\left(g, P_{G}(f)\right), \quad g \in G
$$

Recall that P_{G} is Hausdorff continuous at f if

$$
\lim _{\varepsilon \rightarrow 0^{+}} \sup _{\|h-f\| \leqslant \varepsilon} D\left(P_{G}(f), P_{G}(h)\right)=0 ;
$$

and P_{G} is Hausdorff-Lipschitz continuous at f if there exists $s(f)>0$ such that

$$
D\left(P_{G}(f), P_{G}(h)\right) \leqslant s(f) \cdot\|f-h\|, \quad h \in C_{0}(T)
$$

Then the main results of this paper can be summarized as follows:

Theorem 1. Suppose that G is a finite-dimensional subspace of $C_{0}(T)$. Then the following statements are mutually equivalent:
(i) for every nonzero $g \in G$,

$$
\begin{equation*}
\operatorname{card}(b d Z(g)) \leqslant \operatorname{dim}\{p \in G: \text { int } Z(g) \subset Z(p)\}-1 ; \tag{1}
\end{equation*}
$$

(ii) P_{G} is Hausdorff continuous at every $f \in C_{0}(T)$;
(iii) $P_{G}(f)$ is Hausdorff strongly unique for all $f \in C_{0}(T)$;
(iv) P_{G} is Hausdorff-Lipschitz continuous at every $f \in C_{0}(T)$.

If T contains no isolated points, then all above are equivalent to
(v) $U_{G}=S U_{G}$.

Furthermore, if T is connected, then all above are equivalent to the fact that G satisfies the Haar condition.

Here $Z(g)$ is the set of all zeros of g and $\operatorname{card}(b d Z(g))$ denotes the cardinal number of the boundary set of $Z(g)$.

By Theorem 1 we know that condition (1) is a natural generalization of the Haar condition and generally $S U_{G}=U_{G}$ is not a characteristic description of the Haar condition.

Remark. A nonintrinsic characterization of Hausdorff continuous metric projections was given in [4]. A consequence of this result is that P_{G} is Hausdorff continuous if and only if G satisfies the Haar condition, provided that T is connected [4]. Moreover, for $T=N$ (i.e., $C_{0}(T)=c_{0}$) it was proved in [4] that P_{G} is Hausdorff continuous and in [14] that $U_{G}=S U_{G}$ for an arbitrary finite-dimensional space G of C_{0}.

2. The Equivalence of Hausdorff Strong Uniqueness and Hausdorff-Lipschitz Continuity

From now on, we always assume that G is a finite-dimensional subspace of $C_{0}(T)$. Since P_{G} is upper semicontinuous (i.e., for any $f \in C_{0}(T)$,
$d\left(P_{G}(h), P_{G}(f)\right) \rightarrow 0$ as $\left.h \rightarrow f\right), P_{G}$ is Hausdorff continuous at f if and only if P_{G} is lower semicontinuous at f (i.e., $d\left(P_{G}(f), P_{G}(h)\right) \rightarrow 0$ as $\left.h \rightarrow f\right)$. Our proofs are based on the following theorem:

Theorem B. P_{G} is Hausdorff continuous at f if and only if $E\left(f-P_{G}(f)\right) \subset \operatorname{int}\left\{t \in T: p(t)-g(t)=0\right.$ for all $\left.p, g \in P_{G}(f)\right\}$, where $E\left(f-P_{G}(f)\right)=\left\{t \in T:|f(t)-g(t)|=d(f, G)\right.$ for all $\left.g \in P_{G}(f)\right\}$.

Theorem B is announced in [5] and can be deduced from the proof of Theorem 2 in [4].

First we show that Hausdorff strong uniqueness is closely related to Hausdorff-Lipschitz continuity.

Lemma 1. Suppose that P_{G} is Hausdorff continuous at $f \in C_{0}(T) \backslash G$. Then the following statements are mutually equivalent:
(i) there exists $r>0$ such that
$\sup \left\{\left(f(t)-P_{G}(f)\right) p(t): t \in E\left(f-P_{G}(f)\right)\right\} \geqslant r \cdot\|p\|_{i}, \quad p \in G_{3}$
where $V=\operatorname{int}\left\{t \in T: p(t)-g(t)=0\right.$ for all $\left.p, g \in P_{G}(f)\right\}$ and $\|p\|_{V}=$ $\sup \{|p(t)|: t \in V\} ;$
(ii) $P_{G}(f)$ is Hausdorff strongly unique;
(iii) P_{G} is upper Hausdorff-Lipschitz continuous at f; i.e., there exists $s>0$ such that

$$
d\left(P_{G}(h), P_{G}(f)\right) \leqslant s \cdot\|h-f\|, \quad h \in C_{0}(T) ;
$$

(iv) P_{G} is Hausdorff-Lipschitz continuous at f.

Proof. We first show some simple facts. From Theorem B, we have

$$
\begin{equation*}
E\left(f-P_{G}(f)\right) \subset V \tag{2}
\end{equation*}
$$

Set $g^{*} \in P_{G}(f)$ such that

$$
\begin{equation*}
E\left(f-g^{*}\right)=E\left(f-P_{G}(f)\right) \subset V . \tag{3}
\end{equation*}
$$

Let $\delta=d(f, G)-\max \left\{\left|f(t)-g^{*}(t)\right|: t \in T \backslash V\right\}$. Then

$$
\begin{equation*}
g^{*}+p \in P_{G}(f), \quad \text { for } \quad p \in G \quad \text { with } \quad V \subset Z(p) \text { and } \quad\|p\| \leqslant \delta \tag{4}
\end{equation*}
$$

Set $G(f)=\operatorname{span}\left\{p-g: p, g \in P_{G}(f)\right\}$. Then for some $c>0$,

$$
\begin{equation*}
d(p, G(f)) \leqslant c\|p\|_{V}, \quad p \in G . \tag{5}
\end{equation*}
$$

In fact, if (5) fails to be true, then for some $p \in G \backslash G(f)$,

$$
V \subset Z(p)
$$

From (4) we obtain that for some $\lambda>0, g^{*}+\lambda p \in P_{G}(f)$, i.e.,

$$
p \in G(f) / \lambda=G(f)
$$

This is impossible.
Now we begin to investigate the relations among the statements in Lemma 1.
(i) \Rightarrow (ii). By (i) and the strong Kolmogorov criterion [13], we deduce that there exists $r(f)>0$ such that

$$
\begin{equation*}
\|f-p\| \geqslant d(f, G)+r(f) \cdot\left\|p-P_{G}(f)\right\|_{V}, \quad p \in G \tag{6}
\end{equation*}
$$

Assume that statement (ii) is not true; i.e., there exist $p_{n} \in G \backslash P_{G}(f)$ such that

$$
\begin{equation*}
\left\|f-p_{n}\right\| \leqslant d(f, G)+\frac{1}{n} d\left(p_{n}, P_{G}(f)\right), \quad n \geqslant 1 . \tag{7}
\end{equation*}
$$

Let $g_{n} \in P_{G}(f)$ such that $d\left(p_{n}, P_{G}(f)\right)=\left\|p_{n}-g_{n}\right\|$. From (6) and (7) we get

$$
\begin{equation*}
\left\|p_{n}-g_{n}\right\|_{V} /\left\|p_{n}-g_{n}\right\| \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty \tag{8}
\end{equation*}
$$

By selecting a subsequence, we may assume

$$
\left(p_{n}-g_{n}\right) /\left\|p_{n}-g_{n}\right\| \rightarrow p, \quad \text { as } \quad n \rightarrow \infty
$$

Equation (8) implies $V \subset Z(p)$. By (5), $p \in G(f)$. Set

$$
q_{n}=g_{n}+\left\|p_{n}-g_{n}\right\| \cdot p
$$

Since $\quad\left\|p_{n}-q_{n}\right\| / d\left(p_{n}, P_{G}(f)\right)=\left\|p_{n}-q_{n}\right\| /\left\|p_{n}-g_{n}\right\| \rightarrow 0 \quad$ as $\quad n \rightarrow \infty$, we obtain that

$$
d\left(q_{n}, P_{G}(f)\right) / d\left(p_{n}, P_{G}(f)\right) \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty
$$

Thus we derive from (7) that

$$
\begin{equation*}
\left(\left\|f-q_{n}\right\|-d(f, G)\right) / d\left(q_{n}, P_{G}(f)\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{9}
\end{equation*}
$$

But $V \subset Z(p) \cap Z\left(g_{n}-g^{*}\right) \subset Z\left(q_{n}-g^{*}\right)$ and $q_{n} \bar{\in} P_{G}(f)$. By (4), there exists $1>\lambda_{n}>0$ such that

$$
\begin{equation*}
g^{*}+\lambda_{n}\left(q_{n}-g^{*}\right) \in P_{G}(f) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{*}+\lambda\left(q_{n}-g^{*}\right) \bar{\in} P_{G}(f), \quad \text { for } \quad \lambda>\dot{\lambda}_{p} . \tag{11}
\end{equation*}
$$

Set $u_{n}=g^{*}+\lambda_{n}\left(q_{n}-g^{*}\right)$. From (10) and (11) we obtain

$$
\begin{equation*}
\max \left\{\left(f(t)-u_{n}(t)\right)\left(q_{n}(t)-g^{*}(t)\right): t \in E\left(f-u_{n}\right): V\right\} \geqslant 0 . \tag{12}
\end{equation*}
$$

Let $t_{n} \in E\left(f-u_{n}\right) \backslash V$ such that

$$
\left(f\left(t_{n}\right)-u_{n}\left(t_{n}\right)\right)\left(q_{n}\left(t_{n}\right)-g^{*}\left(t_{n}\right)\right) \geqslant 0 .
$$

Then

$$
\begin{aligned}
\left|q_{n}\left(t_{n}\right)-g^{*}\left(t_{n}\right)\right| & \geqslant\left|f\left(t_{n}\right)-u_{n}\left(t_{n}\right)\right|-\left|f\left(t_{n}\right)-g^{*}\left(t_{n}\right)\right| \\
& =d(f, G)-\left|f\left(t_{n}\right)-g^{*}\left(t_{n}\right)\right| \geqslant \delta .
\end{aligned}
$$

And

$$
\begin{align*}
\left\|f-q_{n}\right\| & \geqslant\left|f\left(t_{n}\right)-q_{n}\left(t_{n}\right)\right| \\
& =\left|f\left(t_{n}\right)-u_{n}\left(t_{n}\right)+\left(1-\lambda_{n}\right)\left(q_{n}\left(t_{n}\right)-g^{*}\left(t_{n}\right)\right)\right| \\
& =\left|f\left(t_{n}\right)-u_{n}\left(t_{n}\right)\right|+\left(1-\lambda_{n}\right)\left|q_{n}\left(t_{n}\right)-g^{*}\left(t_{n}\right)\right| \\
& \geqslant d(f, G)+\left(1-\lambda_{n}\right) \delta . \tag{13}
\end{align*}
$$

But for some $K>0,\left\|q_{n}-g^{*}\right\| \leqslant K$. So

$$
\begin{equation*}
d\left(q_{n}, P_{G}(f)\right) \leqslant\left\|q_{n}-u_{n}\right\|=\left(1-\lambda_{n}\right) \cdot\left\|q_{n}-g^{*}\right\| \leqslant K\left(1-\lambda_{n}\right) \tag{14}
\end{equation*}
$$

Equations (13) and (14) contradict (9). This proves that (i) implies (ii).
(ii) \Rightarrow (i). Suppose

$$
\|p-f\| \geqslant d(f, G)+s(f) \cdot d\left(p, P_{G}(f)\right), \quad p \in G
$$

If (i) is false, then there exists $p \in G$ such that

$$
\begin{gather*}
\|p\|_{V}>0 \tag{16}\\
\sup \left\{\left(f(t)-P_{G}(f)\right) p(t): t \in E\left(f-P_{G}(\hat{f})\right)\right\} \leqslant 0 \tag{17}
\end{gather*}
$$

From (17) we obtain that there exists an open set $W \supset E\left(f-P_{G}(f)\right)$ such that

$$
\begin{equation*}
p(t) \cdot \operatorname{sign}\left(f(t)-g^{*}(t)\right) \leqslant-s(f) d(p, G(f)) / 2, \quad t \in W \tag{18}
\end{equation*}
$$

Let $\varepsilon=d(f, G)-\max \left\{\left|f(t)-g^{*}(t)\right|: t \in T \backslash W\right\}>0$. Then
$\left|f(t)-g^{*}(t)-r \cdot p(t)\right|<d(f, G), \quad 0<r<\varepsilon /\|p\| \quad$ and $\quad t \in T, W$.

Choose $t_{r} \in T$ such that

If $0<r<\varepsilon /\|p\|$, then (19) implies $t_{r} \in W$. It follows from (18) and (20) that

$$
\begin{equation*}
\left\|f-g^{*}-r \cdot p\right\| \leqslant d(f, G)+r \cdot s(f) \cdot d(p, G(f)) / 2 \tag{21}
\end{equation*}
$$

But $d\left(g^{*}+r \cdot p, P_{G}(f)\right)=d\left(r \cdot p, P_{G}(f)-g^{*}\right) \geqslant d(r \cdot p, G(f))=$ $r \cdot d(p, G(f))$. This means that (21) contradicts (15).
(ii) \Rightarrow (iii). Suppose

$$
\|f-p\| \geqslant d(f, G)+r(f) \cdot d\left(p, P_{G}(f)\right), \quad p \in G
$$

For any $p \in P_{G}(h)$, we have

$$
\begin{aligned}
r(f) & \cdot d\left(p, P_{G}(f)\right) \leqslant\|f-p\|-d(f, G) \\
& \leqslant\|f-h\|+\|h-p\|-d(f, G) \\
& =\|f-h\|+d(h, G)-d(f, G) \leqslant 2\|f-h\| .
\end{aligned}
$$

Hence

$$
d\left(P_{G}(h), P_{G}(f)\right) \leqslant 2 \cdot\|f-h\| / r(f), \quad h \in C_{0}(T) .
$$

(iii) \Rightarrow (i). Assume that statement (i) fails to be true; i.e., there exists $p \in G$ such that

$$
\sup \left\{\left(f(t)-P_{G}(f, t)\right) p(t): t \in E\left(f-P_{G}(f)\right)\right\} \leqslant 0, \quad\|p\|_{V} \neq 0
$$

Define

$$
f_{x}(t)=\left[f(t)-g^{*}(t)-\alpha \cdot p(t)\right]_{-d(f, G)}^{d(f, G)}+g^{*}(t)+\alpha p(t)
$$

where

$$
[x]_{a}^{b}= \begin{cases}b, & x \geqslant b \\ x, & a<x<b \\ a, & x \leqslant a\end{cases}
$$

It is easy to check that

$$
\begin{align*}
& g^{*}+\alpha p \in P_{G}\left(f_{\alpha}\right), \\
& \left\|f-f_{\alpha}\right\| / \alpha \rightarrow 0 \quad \text { as } \quad \alpha \rightarrow 0^{+} \tag{22}
\end{align*}
$$

But

$$
\begin{align*}
& d\left(P_{G}\left(f_{x}\right), P_{G}(f)\right) \geqslant d\left(g^{*}+\alpha p, P_{G}(f)\right) \\
& \quad \geqslant d(\alpha p, G(f)) \geqslant \alpha \cdot\|p\|_{\dot{r}}, \quad \text { for } \quad \alpha>0 . \tag{23}
\end{align*}
$$

Equations (22) and (23) contradict the fact that P_{G} is upper Hausdorff-Lipschitz continuous at f.
(iii) \Rightarrow (iv). Since P_{G} is upper Hausdorff-Lipschitz continuous at f, for any $p \in P_{G}(h)$ and $g \in P_{G}(f)$,

$$
\begin{equation*}
\|p-g\|_{l} \leqslant d\left(p, P_{G}(f)\right) \leqslant s(f) \cdot\|f-h\|^{2} \tag{24}
\end{equation*}
$$

By (5) and (24), we obtain

$$
\begin{equation*}
d(p-g, G(f)) \leqslant c \cdot\|p-g\|_{v} \leqslant c \cdot s(f) \cdot\|f-h\|^{\prime} \tag{25}
\end{equation*}
$$

For $g \in P_{G}(f)$, define

$$
\delta(g)=d(f, G)-\max \{|f(t)-g(t)|: t \in T \backslash V\}
$$

Suppose $g \in P_{G}(f)$ such that

$$
\delta(g) \geqslant(c \cdot s(f)+2) \cdot\|f-h\|
$$

From (25) we obtain that for some $p \in P_{G}(h)$ and $q \in G(f)$.

$$
\|g-p-q\| \leqslant c \cdot s(f) \cdot\|f-h\|
$$

For $t \in T \backslash V$,

$$
\begin{aligned}
\mid h(t) & -p(t)-q(t) \mid \\
& \leqslant|h(t)-f(t)|+|f(t)-g(t)|+|g(t)-p(t)+q(t)| \\
& \leqslant\|f-h\|+d(f, G)-(c \cdot s(f)+2)\|f-h\|+c \cdot s(f)\|f-h\| \\
& \leqslant d(f, G)-\|f-h\| \leqslant d(h, G)
\end{aligned}
$$

For $t \in V$,

$$
|h(t)-p(t)-q(t)|=|h(t)-p(t)| \leqslant d(h, G)
$$

Thus $p+q \in P_{G}(h)$ and

$$
\begin{equation*}
d\left(g, P_{G}(h)\right) \leqslant\|g-p-q\| \leqslant c \cdot s(f) \cdot\|f-h\| . \tag{26}
\end{equation*}
$$

Set

$$
\varepsilon=(c \cdot s(f)+2)^{-1} \min \left\{\frac{\delta}{4}, d(f, G)-\frac{\delta}{2}\right\}
$$

Suppose

$$
\|f-h\|<\varepsilon
$$

For $g \in P_{G}(f)$ with $\delta(g) \leqslant(c \cdot s(f)+2)\|f-h\|$, define

$$
W=\left\{t \in T \backslash V:|f(t)-g(t)| \geqslant d(f, G)-\frac{\delta}{2}\right\} .
$$

Since $\left|f(t)-g^{*}(t)\right| \leqslant d(f, G)-\delta$, we obtain

$$
\begin{gather*}
(f(t)-g(t))\left(g(t)-g^{*}(t)\right) \geqslant 0, \quad t \in W \tag{27}\\
\left|g(t)-g^{*}(t)\right| \geqslant \frac{\delta}{2}, \quad t \in W . \tag{28}
\end{gather*}
$$

Let

$$
\lambda=(c \cdot s(f)+2)\|f-h\| /\left\|g-g^{*}\right\| .
$$

Then from (27) and (28) we deduce

$$
\begin{aligned}
\mid f(t) & -g(t)-\lambda\left(g(t)-g^{*}(t)\right) \mid \\
& =|f(t)-g(t)|-\lambda\left|g(t)-g^{*}(t)\right| \\
& \leqslant d(f, G)-\lambda \cdot \delta / 2 \\
& \leqslant d(f, G)-(c \cdot s(f)+2) \cdot\|f-h\|, \quad t \in W
\end{aligned}
$$

But for $t \in T \backslash(V \cup W)$, we have

$$
\begin{aligned}
\mid f(t) & -g(t)-\lambda\left(g(t)-g^{*}(t)\right) \mid \\
& \leqslant d(f, G)-\frac{\delta}{2}+(c \cdot s(f)+2)\|f-h\| \\
& \leqslant d(f, G)-(c \cdot s(f)+2) \cdot\|f-h\| .
\end{aligned}
$$

Thus

$$
\delta\left(g+\lambda\left(g-g^{*}\right)\right) \geqslant(c \cdot s(f)+2 \cdot\|f-h\| .
$$

By (26) we get

$$
d\left(\left(g+\lambda\left(g-g^{*}\right)\right), P_{G}(h)\right) \leqslant c \cdot s(f) \cdot\|f-h\| .
$$

And

$$
\begin{aligned}
d\left(g_{,} P_{G}(h)\right) & \leqslant c \cdot s(f) \cdot\|f-h\|+\left\|\lambda\left(g-g^{*}\right)\right\| \\
& \leqslant 2(c \cdot s(f)+1)\|f-h\| .
\end{aligned}
$$

Hence

$$
\begin{gather*}
d\left(P_{G}(f), P_{G}(h)\right) \leqslant 2(c \cdot s(f)+1\|f-h\| \\
h \in C_{0}(T) \quad \text { with }\|f-h\|<\varepsilon . \tag{29}
\end{gather*}
$$

But (29) implies that for some $K>0$ [2],

$$
d\left(P_{G}(f), P_{G}(h)\right) \leqslant K \cdot\|f-h\|, \quad h \in C_{0}(T)
$$

Let $M=K+s(f)$. Then

$$
D\left(P_{G}(f), P_{G}(h)\right) \leqslant M \cdot\|f-h\|, \quad h \in C_{0}(T) .
$$

(iv) \Rightarrow (iii). It is trivial.

The proof of Lemma 1 is completed now.

Corollary 1 [2]. If $P_{G}(f)$ is unique, then the following are equivalent:
(i) $P_{G}(f)$ if strongly unique;
(ii) P_{G} is Hausdorff-Lipschitz continuous at f.

Proof. Since $P_{G}(f)$ is unique, $P_{G}(f)$ is Hausdorff strongly unique if and only if $P_{G}(f)$ is trongly unique. Thus the corollary follows immediately from Lemma 1.

Lemma 1 can be considered as a generalization of Corollary 1 for multivalued $P_{G}(f)$.

3. Hausdorff Strong Uniqueness

In this section, we will show that if G satisfies condition (1), then $P_{G}(f)$ is Hausdorff strongly unique for every $f \in C_{0}(T)$.

From now on, we make use of the following notation:

$$
\begin{gathered}
G_{B}=\{g \in G: B \subset Z(g)\}, \quad B \subset T \\
Z\left(G_{B}\right)=\left\{t \in T: g(t)=0 \text { for all } g \in G_{B}\right\} .
\end{gathered}
$$

Lemma 2 [10]. G satisfies condition (1) if and only if P_{G} is Hausdorff continuous at every $f \in C_{0}(T)$.

Lemma 3. G satisfies condition (1) if and only if for any $\left\{t_{i}\right\}_{0}^{r} \subset T$ with

$$
\begin{equation*}
\left.\operatorname{dim} G\right|_{\left\{t_{1}^{\prime}\right\}_{0}^{\prime}}=\left.\operatorname{dim} G\right|_{\left.\left\{t_{i}\right\}_{0}^{\prime} t_{1}\right\}}=r, \quad 0 \leqslant j \leqslant r, \tag{30}
\end{equation*}
$$

there hold

$$
\begin{equation*}
\left\{t_{1}\right\}_{0}^{r} \subset \operatorname{int} Z\left(G_{\left\{t_{1}\right\}_{0}^{\prime}}\right) . \tag{31}
\end{equation*}
$$

Proof. Necessity. It is an immediate corollary of Lemma 4 in [10] and Lemma 2.

Sufficiency. Assume that G does not satisfy (1), i.e., there exists nonzero $g \in G$ such that

$$
\begin{equation*}
\operatorname{card}(b d Z(g)) \geqslant \operatorname{dim} G_{\operatorname{int} Z(g)} \tag{32}
\end{equation*}
$$

From (32) we obtain that there exists $t_{0} \in b d Z(g)$ such that

$$
\left.\operatorname{dim} G\right|_{Z(g)}=\left.\operatorname{dim} G\right|_{Z\{g),\left\{t_{0}\right\}}
$$

Select $t_{1}, \ldots, t_{s} \subset Z(g)$ such that

$$
\left.\operatorname{dim} G\right|_{\left\{t_{i}\right\}_{0}^{5}}=\left.\operatorname{dim} G\right|_{\left.\left\{u_{i}\right\}_{0}^{5}:\{t\}\right\}}=s, \quad 0 \leqslant j \leqslant s
$$

By the hypothesis of Lemma 3, we have

$$
t_{0} \subset\left\{t_{i}\right\}_{0}^{s} \subset \operatorname{int} Z\left(G_{\{t\}_{0}^{s}}\right) \subset \operatorname{int} Z(g)
$$

This contradicts $t_{0} \in b d Z(g)$.

Lemma 4. If $f \in C_{0}(T) \backslash G$ and $q \in P_{G}(f)$, then for any $p \in G$ with

$$
\begin{equation*}
\operatorname{int}\{t \in T:(f(t)-q(t)) p(t) \geqslant 0\} \supset E\left(f-P_{G}(f)\right) \tag{33}
\end{equation*}
$$

there hold

$$
\begin{equation*}
E\left(f-P_{G}(f)\right) \subset Z(G(f)) \subset Z(p) \tag{34}
\end{equation*}
$$

where $G(f)=\operatorname{span}\left\{g_{1}-g_{2}: g_{1}, g_{2} \in P_{G}(f)\right\}$.
Proof. Let $g \in P_{G}(f)$ such that

$$
\begin{equation*}
E(f-g)=E\left(f-P_{G}(f)\right) \tag{35}
\end{equation*}
$$

Since $E\left(f-P_{G}(f) \subset Z(g-q)\right.$, we derive from (33) and (35) that there exists $\lambda>0$ such that

$$
g+\lambda p \in P_{G}(f)
$$

Hence

$$
E\left(f-P_{G}(f)\right) \subset Z(G(f)) \subset Z(\lambda p)=Z(p)
$$

Lemma 5. Suppose that G satisfies condition (1). Then for any closed subset $Y \subset T, G^{*}=\left.G\right|_{Y}$, and $h \in C_{0}(Y) \backslash G^{*}$, there hold

$$
\begin{equation*}
E\left(h-P_{G^{*}}(h)\right) \subset \operatorname{int} Z\left(G_{E\left(h-P_{G^{*}}(h)\right)}\right) \tag{36}
\end{equation*}
$$

Proof. Let $V=\operatorname{int} Z\left(G_{E\left(h-P_{G} *(h)\right)}\right)$. If (36) fails, then

$$
\begin{equation*}
A=E\left(h-P_{G^{*}}(h)\right) \backslash V \neq \phi \tag{37}
\end{equation*}
$$

If $\left.\operatorname{dim} G_{i}\right|_{A} \leqslant \operatorname{card}(A)-1$, then there exist $t_{0} \in A$ and $t_{1}, \ldots, t_{r} \in A \cup V$ such that

$$
\left.\operatorname{dim} G\right|_{\left\{t_{t},\right\}_{0}^{r}}=\left.\operatorname{dim} G\right|_{\left\{t_{t}\right\}_{0}^{r},\left\{t_{j}\right\}}=r, \quad 0 \leqslant j \leqslant r .
$$

By Lemmá 3 we obtain

$$
\begin{gathered}
t_{0} \in\left\{t_{i}\right\}_{0}^{r} \subset \operatorname{int} Z\left(G_{\left\{t_{t}\right\}_{0}^{r}}\right) \subset \operatorname{int} Z\left(G_{A \cup V}\right) \\
=\operatorname{int} Z\left(G_{E\left(h-P_{C} \cdot(h)\right)}\right)=V .
\end{gathered}
$$

This is impossible.
If $\left.\operatorname{dim} G_{V}\right|_{A}=\operatorname{card}(A)$, set $g \in P_{G^{*}}(h)$; then there is $\left.p \in G_{V}\right|_{Y} \subset G^{*}$ such that

$$
\begin{equation*}
p(t)=h(t)-g(t) \neq 0, \quad t \in A \tag{38}
\end{equation*}
$$

Equations (37) and (38) imply

$$
\operatorname{int}_{Y}\{t \in Y:(h(t)-g(t)) p(t) \geqslant 0\} \supset E\left(h-P_{G^{*}}(h)\right),
$$

where int ${ }_{Y} B$ denotes all interior points of B in Y. By Lemma 4, we have

$$
E\left(h-P_{G^{*}}(h)\right) \subset Z(p)
$$

This contradicts (38) and (37). The contradictions show that (36) is true.

Lemma 6. If G satisfies condition (1), then for any $f \in C_{0}(T)$ and $g \in P_{G}(f)$, set $E=E\left(f-P_{G}(f)\right), f-\left.g\right|_{E}$ has zero as the unique best approximation from $\left.G\right|_{E}$.

Proof. We may assume $f \in C_{0}(T) \backslash G$. Let

$$
h=f-\left.g\right|_{E}, \quad G^{*}=\left.G\right|_{E}
$$

By the Kolmogorov criterion [13], we obtain

$$
\begin{equation*}
\|f-g\|=d(f, G)=d\left(h, G^{*}\right) \tag{39}
\end{equation*}
$$

Lemma 5 states

$$
\begin{equation*}
E\left(h-P_{G^{*}}(h)\right) \subset \operatorname{int}\left(G_{E\left(h-P_{G^{*}}(h)\right)}\right) \tag{40}
\end{equation*}
$$

Let $p \in G$ such that

$$
\begin{gather*}
\left.p\right|_{E} \in P_{G^{*}}(h) \tag{41}\\
\left\{t \in E:|h(t)-p(t)|=d\left(h, G^{*}\right)\right\}=E\left(h-P_{G^{*}}(h)\right) \tag{42}
\end{gather*}
$$

From (39), (40), (41), and (42), we can deduce

$$
\operatorname{int}\{t \in T:(f(t)-g(t)) p(t) \geqslant 0\} \supset E=E\left(f-P_{G}(f)\right)
$$

By Lemma 4, we get

$$
\begin{equation*}
E=E\left(f-P_{G}(f)\right) \subset Z(p) \tag{43}
\end{equation*}
$$

And (39) and (43) imply $E=E\left(h-P_{G^{*}}(h)\right.$). Hence, h has zero as the unique best approximation from G^{*}.

Lemma 7. If G satisfies condition (1), then $P_{G}(f)$ is Hausdorff strongly unique for all $f \in C_{0}(T)$.

Proof. Obviously, $P_{G}(f)$ is strongly unique for all $f \in G$. Now suppose $f \in C_{0}(T) \backslash G$. Lemma 5 and 6 tell us that

$$
E\left(f-P_{G}(f)\right) \subset \operatorname{int} Z\left(G_{E\left(f-P_{G}(f)\right.}\right)=V
$$

This means that there exists $\alpha>0$ such that

$$
\begin{equation*}
\|g\|_{E\left(f-P_{G}(f)\right)} \leqslant \alpha\|g\|_{V}, \quad g \in G . \tag{44}
\end{equation*}
$$

By Lemma 6, we derive that there exists $\beta>0$ such that

$$
\begin{align*}
& \max \left\{g(t) \operatorname{sign}\left(f(t)-P_{G}(f, t)\right): t \in E\left(f-P_{G}(f)\right)\right\} \\
& \geqslant \beta\|g\|_{E\left(f-P_{G}(f)\right)}, \quad g \in G . \tag{45}
\end{align*}
$$

By Lemma 2, we know that P_{G} is Hausdorff continuous at f. And (44), (45) imply that statement (i) in Lemma 1 holds for $r=\alpha \cdot \beta$. Thus $P_{G}(f)$ is Hausdorff strongly unique.

Remark. If $P_{G}(f)$ is strongly unique, then P_{G} is Hausdorff continuous at f. But, generally, the Hausdorff strong uniqueness of $P_{G}(f)$ does not imply that P_{G} is Hausdorff continuous at f.

4. Characterization of $U_{G}=S U_{G}$

In this section, we will show that if T contains no isolated points, then $U_{G}=S U_{G}$ is equivalent to the fact that G satisfies condition (1). First we establish some more general results.

Lemma 8. If $\operatorname{dim} G^{*}<\infty$, then there exists a group of sets $\left\{A_{i}\right\}_{0}^{r} \subset T$ such that

$$
\begin{gather*}
\left.G_{i}\right|_{A_{i}}=\left.G_{i}\right|_{A^{\prime},\{x\}}=\operatorname{card}\left(A_{i}\right)-1 \geqslant 1, \quad x \in A_{i}, \quad 0 \leqslant i \leqslant r \tag{45}\\
\operatorname{dim} G_{r+1}=\operatorname{card}\left(T \backslash Z\left(G_{r+1}\right)\right) \tag{47}
\end{gather*}
$$

where $G_{0}=G^{*}$ and $G_{i+1}=\left\{g \in G_{i}: A_{i} \subset Z(g)\right\}, 0 \leqslant i \leqslant r$.
Proof. This lemma can be easily proved by induction.
Lemma 9. Suppose $f \in C_{0}(T) \backslash G$ and $g \in P_{G}(f)$ such that

$$
\begin{equation*}
E(f-g)=E\left(f-P_{G}(f)\right) \tag{48}
\end{equation*}
$$

If $h \in C_{0}(T)$ satisfies

$$
\begin{align*}
\|h\| & =d(f, G)=\|f-g\| \tag{49}\\
\operatorname{int}\{t \in T: h(t) & =f(t)-g(t)\} \supset E\left(f-P_{G}(f)\right), \tag{50}
\end{align*}
$$

then

$$
\begin{equation*}
Z(G(f)) \subset Z(G(h))=Z\left(P_{G}(h)\right) \tag{51}
\end{equation*}
$$

Proof. From (49), (50), we obtain that $0 \in P_{G}(h)$ and $d(h, G)=d(f, G)$. If $p \in P_{G}(h)$, then for all $0 \leqslant \lambda \leqslant 1, \lambda p \in P_{G}(h)$. Let

$$
V=\operatorname{int}\{t \in T: h(t)=f(t)-g(t)\}
$$

Then for $0<\lambda<1$,

$$
\begin{align*}
& |f(t)-g(t)-\lambda p(t)|=|h(t)-\lambda p(t)| \\
& \quad \leqslant d(h, G)=d(f, G)=\|f-g\|, \quad t \in V . \tag{52}
\end{align*}
$$

By (48) and (50), we obtain that for some $0<\lambda^{*}<1$,

$$
\begin{equation*}
\left|f(t)-g(t)-\lambda^{*} p(t)\right| \leqslant\|f-g\|, \quad t \in T \backslash V \tag{53}
\end{equation*}
$$

Equations (52) and (53) mean $g+\lambda^{*} p \in P_{G}(f)$. So

$$
Z(G(f)) \subset Z\left(g+\lambda^{*} p-g\right)=Z(p), \quad p \in P_{G}(h)
$$

This implies that (51) holds.

Lemma 10. If there exist $f \in C_{0}(T) \backslash G$ and $g \in G$ such that

$$
\begin{gather*}
Z(G(f)) \backslash Z(g) \neq \phi, \tag{54}\\
\max \left\{g(t) \operatorname{sign}\left(f(t)-P_{G}(f, t)\right): t \in E\left(f-P_{G}(f)\right)\right\} \leqslant 0, \tag{55}
\end{gather*}
$$

then there exist $h \in C_{0}(T) \backslash G$ and $p \in G$ such that

$$
\begin{gather*}
Z(G(h)) \backslash Z(p) \neq \phi, \tag{56}\\
\max \left\{p(t) \operatorname{sign}\left(h(t)-P_{G}(h, t)\right): t \in E\left(h-P_{G}(h)\right)\right\} \leqslant 0, \tag{57}\\
\operatorname{dim} G(h)=\operatorname{card}(T \backslash Z(G(h))) \tag{58}
\end{gather*}
$$

Proof. Let $q \in P_{G}(f)$ such that

$$
\begin{equation*}
E(f-q)=E\left(f-P_{G}(f)\right) \tag{59}
\end{equation*}
$$

Set $G^{*}=G_{Z(G(f))}$. From Lemma 8, we obtain that there is a group of sets $\left\{A_{i}\right\}_{0}^{r}$ satisfying (46) and (47). Arbitrarily choose $t_{i} \in A_{i}, 0 \leqslant i \leqslant r$. From (46) we know that there is $g^{*} \in G^{*}$ such that

$$
\left(\bigcup_{i=0}^{r} A_{i}\right) \backslash\left\{t_{i}\right\}_{0}^{r} \subset Z\left(g-g^{*}\right)
$$

There are $\varepsilon_{i} \in\{-1,1\}, 0 \leqslant i \leqslant r$, such that

$$
\varepsilon_{i}\left(g\left(t_{i}\right)-g^{*}\left(t_{i}\right)\right) \leqslant 0
$$

Equation (46) also implies that there exist extremal signatures [12] σ_{i} of G_{i} supporting on A_{i} such that

$$
\sigma_{i}\left(t_{i}\right)=\varepsilon_{i}, \quad 0 \leqslant i \leqslant r
$$

Then

$$
\begin{equation*}
\sigma_{i}(t) \cdot\left(g(t)-g^{*}(t)\right) \leqslant 0, \quad t \in A_{i}, \quad 0 \leqslant i \leqslant r \tag{60}
\end{equation*}
$$

By Tietz's extension theorem and (55), (60), we can construct $h \in C_{0}(T)$ satisfying

$$
\begin{gather*}
V=\operatorname{int}\{t \in T: h(t)=f(t)-q(t)\} \supset E\left(f-P_{G}(f)\right)=E(f-q) ; \\
\|f-q\|=d(f ; G)=\|h\| ; \tag{61}\\
h(t)=\sigma_{i}(t), \quad t \in A_{i}, \quad 0 \leqslant i \leqslant r ; \tag{62}\\
\max \left\{\left(g(t)-g^{*}(t)\right) \operatorname{sign} h(t): t \in E(h)\right\} \leqslant 0 . \tag{63}
\end{gather*}
$$

It follows from Lemma 9 that $Z(G(f)) \subset Z\left(P_{G}(h)\right)$. So

$$
\begin{equation*}
P_{G}(h) \subset G_{Z(G(f))}=G^{*} \tag{64}
\end{equation*}
$$

Since σ_{i} are extremal signatures of $G_{i}, 0 \leqslant i \leqslant r$, by (61), (62), and (64), we obtain

$$
\begin{equation*}
\bigcup_{i=0}^{r} A_{i}=\bigcup_{t=0}^{r} \sup \sigma_{i} \subset Z\left(P_{G}(h)\right) \tag{65}
\end{equation*}
$$

Equations (64) and (65) imply

$$
G(h)=\operatorname{span} P_{G}(h) \subset G_{r+1} .
$$

It follows from (47) that

$$
\begin{equation*}
\operatorname{dim} G(h)=\operatorname{card}(T \backslash Z(G(h))) . \tag{66}
\end{equation*}
$$

Let $p=g-g^{*}$. Then, by (54), (63), (64), and $g^{*} \in G_{Z(G 4 f)}$, we obtain that

$$
\begin{align*}
& Z(G(h)) \backslash Z(p) \supset Z(G(f)) \backslash Z(p)=Z(G(f)) \backslash Z(g) \neq \phi, \tag{67}\\
& \left.\max \left\{p(t) \operatorname{sign}(h(t))-P_{G}(h ; t)\right): t \in E\left(h-P_{G}(h)\right)\right\} \leqslant 0 . \tag{68}
\end{align*}
$$

Equations (66), (67), and (68) complete the proof of this lemma.

Lemma 11. Suppose that G^{*} is a finite-dimensional subspace of $C_{0}(T)$. If $z \in \operatorname{bd} Z\left(G^{*}\right), z_{k} \in T \backslash Z\left(G^{*}\right)$, and $z_{k} \rightarrow z$, then there exist $\lambda_{k}>0$ and $\lambda_{k} \rightarrow 0$ such that

$$
\limsup _{k \rightarrow \infty} \mid g\left(z_{k}\right) \|^{\prime} \lambda_{k}=+\infty, \quad \text { for all } g \in G^{*} \quad \text { with } \quad Z(g) \cap\left\{z_{k}\right\}_{1}^{x}=\phi
$$

Proof. Assume that no $\left\{\lambda_{k}\right\}$ satisfies (69). Then there are $\left\{g_{n}\right\}_{0}^{\infty} \subset G^{*}$ and $M_{n}>0$ such that

$$
\begin{align*}
& Z\left(g_{n}\right) \cap\left\{z_{k}\right\}_{1}^{\infty}=\phi, \tag{70}\\
& \left|g_{n}\left(z_{k}\right)\right| \leqslant M_{n} \cdot\left|g_{n-1}\left(z_{k}\right)\right|^{2}, \quad k=1,2, \ldots, n=1,2, \ldots \tag{71}
\end{align*}
$$

From (70) and (71) we deduce that $\left\{g_{n}\right\}_{0}^{x}$ is a linearly independent system in G^{*}. This contradicts that $\operatorname{dim} G^{*}$ is finite.

Lemma 12. If G does not satisfy condition (1), then there exist $f \in C_{0}(T) \backslash G$ and $g \in G$ such that

$$
\begin{gather*}
Z(G(f)) \backslash Z(g) \neq \phi, \tag{72}\\
\max \left\{g(t) \operatorname{sign}\left(f(t)-P_{G}(f, t)\right): t \in E\left(f-P_{G}(f)\right)\right\} \leqslant 0 . \tag{73}
\end{gather*}
$$

Proof. By Lemma 3, there are $\left\{t_{i}\right\}_{0}^{r}$ such that

$$
\begin{gather*}
\left.\operatorname{dim} G\right|_{\left\{t_{i}\right\}_{0}^{r}}=\left.\operatorname{dim} G\right|_{\left\{t_{t}\right\}_{0}^{r}:\left\{t_{\}}\right\}}=r, \quad 0 \leqslant \delta \leqslant r, \tag{74}\\
t_{r} \overline{\operatorname{E}} \operatorname{int} Z\left(G_{\left\{t_{i}\right\}_{0}}\right) . \tag{75}
\end{gather*}
$$

Obviously, there exists an open neighborhood V of t_{r} such that for any $g \in G, \quad t_{r} \in \operatorname{int} Z(g)$ implies $V \subset Z(g)$. Set $G^{*}=G_{\left\{t_{i}\right\}_{0}^{r}}$. Let $t_{r+1}, \ldots, t_{n} \in V$ such that

$$
\left.\operatorname{dim} G^{*}\right|_{\{t\}_{r+1}^{n}} ^{n}=\left.\operatorname{dim} G^{*}\right|_{V}=n-r .
$$

Select $z_{k} \in V \backslash Z\left(G^{*}\right)$ such that $z_{k} \rightarrow t_{r}$ as $k \rightarrow \infty$. By selecting a subsequence, we may assume that there exist $r+1 \leqslant m \leqslant n$ and $\varepsilon_{i} \in\{-1,1\}$, $r \leqslant i \leqslant m$, such that

$$
\begin{align*}
& \left.\operatorname{dim} G^{*}\right|_{\left\{t_{t}\right\}_{r+1}^{m} \cup\left\{z_{k}\right\}}=\left.\operatorname{dim} G^{*}\right|_{\left\{t_{i}\right\}_{r+1}^{m}}=\left.\operatorname{dim} G^{*}\right|_{\left\{t_{t}\right\}_{r+1}^{m} \cup\{=-k\}\left\{t_{t}\right\}}=m-r, \\
& \quad r+1 \leqslant j \leqslant m, \quad k \geqslant 1 \tag{76}
\end{align*}
$$

and

$$
\sigma_{k}(t)= \begin{cases}\varepsilon_{i}, & t=t_{i}, \quad r+1 \leqslant i \leqslant m \\ \varepsilon_{r}, & t=z_{k}, \\ 0 & \text { otherwise }\end{cases}
$$

are extremal signatures of G^{*}. Let $g^{*} \in G^{*}$ satisfy

$$
g^{*}\left(t_{i}\right)=-\varepsilon_{i}, \quad r+1 \leqslant i \leqslant m .
$$

Let V_{i} be open neighborhoods of t_{i} such that

$$
\begin{equation*}
\varepsilon_{i} g^{*}(t) \leqslant 0, \quad t \in V_{i}, \quad r+1 \leqslant i \leqslant m \tag{77}
\end{equation*}
$$

By Lemma 11, there are $0<\lambda_{k}<1$ such that

$$
\limsup _{k \rightarrow \infty}\left|g\left(z_{k}\right)\right| / \lambda_{k}=+\infty, \quad \text { for } \quad g \in G^{*} \quad \text { with } \quad Z(g) \cap\left\{z_{k}\right\}_{1}^{\infty}=\phi
$$

Equation (74) implies that there is an extremal signature σ of G supporting on $\left\{t_{i}\right\}_{0}^{r}$ such that $\sigma\left(t_{r}\right)=\varepsilon_{r}$. By Tietz's extension theorem, we can construct $f \in C_{0}(T)$ satisfying

$$
\begin{gather*}
f\left(t_{i}\right)= \begin{cases}\sigma\left(t_{i}\right), & 0 \leqslant i \leqslant r, \\
\varepsilon_{i}, & r+1 \leqslant i \leqslant m,\end{cases} \tag{78}\\
1>f\left(z_{k}\right) \cdot \sigma\left(t_{r}\right) \geqslant\left(1-\lambda_{k}\right), \quad k \geqslant 1, \\
\|f\|=1, \tag{79}
\end{gather*}
$$

$$
\begin{gather*}
E(f) \subset Z\left(G^{*}\right) \cup\left(\bigcup_{i=r+1}^{m} V_{i}\right), \tag{80}\\
\varepsilon_{i} f(t) \geqslant 0, \quad t \in V_{i}, \quad r+1 \leqslant i \leqslant m . \tag{81}
\end{gather*}
$$

We first show that

$$
\begin{equation*}
\left\{t_{i}\right\}_{0}^{m} \cup\left\{z_{k}\right\}_{1}^{\infty} \subset Z(G(f)) \tag{82}
\end{equation*}
$$

In fact, (78), (79), and σ being an extremal signature of G imply that $0 \in P_{G}(f)$ and

$$
\begin{equation*}
\left\{t_{i}\right\}_{0}^{r} \subset Z(G(f))=Z\left(P_{G}(f)\right) \tag{83}
\end{equation*}
$$

Let $p \in P_{G}(f) \subset G^{*}$. Set $B=\left\{k: p\left(z_{k}\right) \cdot \sigma\left(t_{r}\right) \geqslant 0\right\}$. If $B=\phi$, by the property of $\left\{\lambda_{k}\right\}_{1}^{x}$, there is some k such that

$$
-\sigma\left(t_{r}\right) P\left(z_{k}\right) \geqslant 2 \lambda_{k} .
$$

Hence,

$$
\begin{aligned}
\left|f\left(z_{k}\right)-p\left(z_{k}\right)\right| & =\sigma\left(t_{r}\right) f\left(z_{k}\right)-\sigma\left(t_{r}\right) p\left(z_{k}\right) \geqslant 1-\lambda_{k}-\sigma\left(t_{r}\right) p\left(z_{k}\right) \\
& \geqslant 1-\lambda_{k}+2 \lambda_{k}=1+\lambda_{k}>1=d(f, G)=\|f-p\| .
\end{aligned}
$$

This is impossible.
Now arbitrarily choose $k \in B$. By (78) and the definition of σ_{k}, we have

$$
\begin{aligned}
p\left(t_{i}\right) \sigma_{k}\left(t_{i}\right) & =p\left(t_{i}\right) \varepsilon_{i} \geqslant 0, & r+1 \leqslant i \leqslant m, \\
p\left(z_{k}\right) \sigma_{k}\left(z_{k}\right) & =p\left(z_{k}\right) \sigma\left(t_{r}\right) \geqslant 0 . &
\end{aligned}
$$

Since σ_{k} is an extremal signature of G^{*}, we obtain

$$
\left\{t_{i}\right\}_{r+1}^{m} \cup\left\{z_{k}\right\} \subset Z(p), \quad p \in P_{G}(f)
$$

This and (76), (83) mean that (82) is true.
From (77), (80), and (81), we obtain

$$
\begin{align*}
\max & \left\{g^{*}(t) \operatorname{sign}\left(f(t)-P_{G}(f, t)\right): t \in E\left(f-P_{G}(f)\right)\right\} \\
& \leqslant \max \left\{g^{*}(t) \cdot \operatorname{sign} f(t): t \in E(f)\right\} \leqslant 0 . \tag{84}
\end{align*}
$$

And

$$
\begin{equation*}
Z(G(f)) \backslash Z\left(g^{*}\right) \supset\left\{t_{i}\right\}_{r+1}^{m} \neq \phi . \tag{85}
\end{equation*}
$$

Equations (84) and (85) are the required results.

Lemma 13. If the Hausdorff continuity of P_{G} at f always implies the Hausdorff-Lipschitz continuity of P_{G} at f, then G satisfies condition (1).

Proof. Assume that G does not satisfy condition (1). Then Lemma 12 tells us that there are $f \in C_{0}(T) \backslash G, g \in G$ satisfying (72) and (73). By Lemma 10 , we can find $h \in C_{0}(T) \backslash G$ and $p \in G$ such that (56), (57), and (58) hold. But (58) means that $Z(G(h))$ is an open subset. It follows from Theorem B that P_{G} is Hausdorff continuous at f. By the hypothesis of this lemma, we conclude that P_{G} is Hausdorff-Lipschitz continuous at f. It is derived from Lemma 1 that

$$
\max \left\{p(t) \operatorname{sign}\left(h(t)-P_{G}(h, t)\right): t \in E\left(h-P_{G}(h)\right)\right\} \geqslant r \cdot\|p\|_{Z(G(h))} .
$$

This contradicts (56) and (57). The contradiction shows that G satisfies condition (1).

If T has no isolated points, then (58) implies that $P_{G}(h)$ is unique. If $U_{G}=S U_{G}$, then Lemma 1 also ensures (84) which contradicts (56) and (57). Thus, we have the following characteristic description of $U_{G}=S U_{G}$:

Lemma 14. Suppose that T has no isolated points. Then G satisfies condition (1) if and only if $U_{G}=S U_{G}$.

Proof. This lemma follows immediately from Lemma 7 and the remark above.

5. Summary of Proved Results and Some Remarks

First we summarize the results proved in Section 2, 3, and 4.
Proposition 1. The following are equivalent:
(i) G satisfies condition (1);
(ii) P_{G} is Hausdorff continuous at every $f \in C_{0}(T)$;
(iii) P_{G} is upper Hausdorff-Lipschitz continuous at every $f \in C_{0}(T)$;
(iv) P_{G} is Hausdorff-Lipschitz continuous at every $f \in C_{0}(T)$;
(v) $P_{G}(f)$ is Hausdorff strongly unique for all $f \in C_{0}(T)$;
(vi) Hausdorff continuity of P_{G} at f always implies HausdorffLipschitz continuity of P_{G} at f;
(vii) Hausdorff continuity' of P_{G} at f always implies upper HausdorffLipschitz continuity of P_{G} at f;
(viii) Hausdorff continuity of P_{G} at f always implies Hausdorff strong uniqueness of $P_{G}(f)$.

If T has no isolated points, then all above are equivalent to
(ix) $U_{G}=S U_{G}$.

Furthermore, if T is connected, then all above are equivalent to
(x) G satisfies the Haar condition.

Proof. The equivalences among (i) (ix) follow from Lemma 1, Lemma 2, Lemma 7, Lemma 13, and Lemma 14. Under the hypothesis that T is connected, Blatter et al. [4] show that P_{G} is Hausdorff continuous at every $f \in C_{0}(T)$ if and only if G satisfies the Haar condition. Thus (ii) implies (x). This completes the proof of Proposition 1.

Theorem 1 is only a part of Proposition 1.
Remark. Recall that G is an almost Chebyshev subspace of $C_{0}(T)$ in except for a set of first category in $C_{0}(T)$ every function has a unique best approximation from G [8]. There are nice characterizations about almost Chebyshev subspaces:

THEOREM C. Suppose that T is a compact metric space and $G \subset C_{0}(T)$ with $\operatorname{dim} G<\infty$. Then the following are equivalent:
(i) G is an almost Chebyshev subspace;
(ii) if $V \subset T$ is open and $\operatorname{dim} G_{V} \geqslant 1$, then $\operatorname{card}(V)=\left.\operatorname{dim} G\right|_{V}$;
(iii) $S U_{G}$ is dense in $C_{0}(T)$;
(iv) if P_{G} is Hausdorff continuous at f, then $F_{G}(f)$ is unique.

The equivalence of (i) and (ii) is proved by Garkavi [8]; Nürnberger and Singer show the equivalence of (i) and (iii) [14]; Bartelt and Schmidt [2] establish the equivalence of (i) and (iv).

Actually, if T is a locally compact Hausdorff space, then (i) \Rightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) (see $[2,8,14]$). On the other hand, if G satisfies (ii) in Theorem C, then (58) implies that $P_{G}(h)$ is unique. Thus, we have the following corollary of Proposition 1 and Theorem C :

Corollary 2. If G is a finite-dimensional almost Chebyshei subspace of $C_{0}(T)$, then the statements (i)-(x) in Proposition 1 are mutually equivalent.

We leave the details to the interested reader.
Remark. Generally, if T contains isolated points, the equivalence of (i) and (v) in Theorem 1 may not be true. For example, let G_{0} be any finitedimensional subspace of $C[0,1]$. Let $T=[0,1] \cup\{-1\}$. Define

$$
G=\left\{g \in C(T)=g \mid[0,1] \in G_{0}\right\} .
$$

Then $\operatorname{dim} G=\operatorname{dim} G_{0}+1$. For any $f \in C(T), f \in U_{G}$ if and only if $f \in G$. So $U_{G}=S U_{G}$. But it is easy to check that G satisfies (i) if and only if G_{0} satisfies the Haar condition. Thus (i) and (v) in Theorem 1 are not equivalent if G_{0} is not a Haar subspace of $C[0,1]$.

References

1. J. R. Angelos, M. S. Henry, E. H. Kaufman, Jr., T. D. Lenker, and A. Kroó, Local and global Lipschitz constants, J. Apporx. Theory 46 (1986), 137-156.
2. M. W. Bartelt and D. Schmidt, Lipschitz conditions, strong uniqueness and almost Chebyshev subspaces of $C(X)$, J. Approx. Theory 40 (1984), 202-215.
3. Hans-Peters Blatt, Lipschitz continuity and strong unicity in G. Freud's work, J. Approx. Theory 46 (1986), 25-31.
4. J. Blatter, P. D. Morris, and D. E. Wulbert, Conlinuity of the set-valued metric projection, Math. Ann. 178 (1968), 12-24.
5. J. Blatter and L. Schumaker, The set of continuous selections of a metric projection in $C(X)$, J. Approx. Theory 36 (1982), 1-155.
6. E. W. Cheney, "Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
7. G. Freud, Eine Ungleichung für Tschebyscheffsche Approximationspolynome, Acta. Sci. Math. (Szeged) 19 (958), 162-164.
8. A. L. Garkav, Almost Chebyshev systems of continuous functions, Amer. Math. Soc. Transl. 96 (1970), 177-187.
9. A. HaAr, Die Minkowskische Geometrie und Die Annaherung an Stetige Funktionen, Math. Ann. 78 (1918), 294-311.
10. Wu LI, The intuitive characterization of lower semicontinuity of metric projection in $C_{0}(T, X), J$. Approx. Theory, to appear.
11. H. W. MacLaughlin and K. B. Somers, Another characterization of Haar subspaces, J. Approx. Theory 14 (1975), 93-102.
12. D. J. Newman and H. S. Shapiro, Some theorems on Chebyshev approximation, Duke Math. J. 30 (1963), 673-684.
13. G. Nürnberger, Unicity and strong unicity in approximation theory, J. Approx. Theory 26 (1979), 54-70.
14. G. Nürnberger and I. Singer, Uniqueness and strong uniqueness of best approximations by spline spaces and other spaces, J. Math. Anal. Appl. 90 (1982), 171-184.
15. R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
16. J. W. Young, General theory of approximation by functions involving a given number of parameters, Trans. Amer. Math. Soc. 8 (1907), 331-344.

[^0]: * Present address: Department of Mathematics, the Pennsylvania State University, University Park, PA 16802, U.S.A.

